One-Shot Signatures and
Applications

Aggelos Kiayias
University of Edinburgh and I0G

Joint work with Ryan Amos, Marios Georgiou, Mark Zhandry
Slides credits: Marios Georgiou & AK

Classical

One-Shot QSIg Quantum

1. Quantum Retrieval Games
2. Tokenized Signatures
3. One-Shot Signatures

sk: quantum
signing key
e VKk: classical
verification key

Common syntax
e Gen(1n): (sk, vk)
e Sign(sk, m): o
e Ver(vk, m,0): b
Correctness
If (sk, vk) < Gen(1") then Ver(vk, m, Sign(sk, m)) = 1 for any message m.

Security

High level: sk can sign only a single message. It collapses.

Quantum Retrieval Games

A C

sk
“ (sk, vk) «— Gen(1")
00,01 o
A wins if:

e Ver(vk, 0, 0g) =1
e Ver(vk, 1,0¢) =1

X1 X2

Construction: Hidden Matching Problem [Gavinsky 2012] %
Security: Unconditional X, Xs

Classical
Quantum

Tokenized Signatures

A

sk,vk

A

C

00,01

Construction: Hidden Cosets [CLLZ21]
Security: iO + OWF

»
»

A wins if:

e Ver(vk, 0, 0y)
e Ver(vk, 1, 09)

G
H
1+H
2+H
3+H

(sk, vk) «— Gen(1")

=1
=1

Classical
Quantum

Classical
Quantum

One-Shot Signatures

A C

00,01,VK .
A wins if;

e Ver(vk, 0, op)
e Ver(vk, 1, 0y)

Constructions: A ,
4

e Partition Z," into subsets and access partition via
o Quantum oracles
o Classical oracles

e Plain Model: Candidate constructions by obfuscating the oracles “

1
1

Classical
Quantum

One-Shot Signatures from One-Shot Chameleon

Signing key
Syntax | Verification key
e Gen(1n): (SW Message Reduction
- If one can sign both 0 and 1,
e [Invert(sk, x): r -~ it can find a collision. \
e H(x,rn:y Signature
Correctness

If (sk, y) «— Gen(1") then H(x, r) =y for any input x, where r «— Invert(sk, x).
Security

H is collision resistant.

Classical
Quantum

Equivocal Hash Functions

Syntax

o Gen(1): (sk, y, Q(.))
e Equiv(sk, b): x
e H(x):y

Correctness/Equivocality
If (sk, y) < Gen(1") then H(x) =y and Q(x)=b for any input x, where x < Invert(sk, b).
Security

H is collision resistant.

Classical
Quantum

OS Chameleon and Equivocal Hash Functions

Theorem. Equivocal hash functions & One-shot Chameleon

o Gen(1M): (sk,y, Q(.)) e Gen'(1M): (sk, y’) o
e Equiv(sk, b): x e Invert(sk, X): r X is in {0,1}
e H(x):y o H(X,r)y

Proof “<=" we set Q to be the first bit. Define H(x) = H'(x_0, x_17...x_k-1).

For Equiv, given sk,b, run Invert(sk,b) to obtain r' such that H’(b,r')=y, it
follows that b||r’ satisfies the Q predicate and is a preimage.

“=>"Define H'(x,r’) = H(r') || Q(r') XOR x" and y’ = y||0
For invert(sk, x’) : run Equiv(sk, x’) to obtain r’ such that Q(r')=x’ and H(r’)=y.
Observe that H'(x',) = H(r) || Q(r') XOR X =y || X XORX =y ||0=Y

Classical
Quantum

The quantum flavours of collision resistance

e Collision resistant.
o Hard to find distinct x0, x1 such that H(x0)=H(x1)
e Unequivocal
o No efficient adversary can find a hash y, and predicate Q such that later given b, it is possible
to find a pre-image x with Q(x)=b and H(x)=y
e Collapsing
o Let A(y) be the preimage set of any y. Having access to a superposition of A(y) is no more
useful than having a random element of A(y).

Observe: Collapsing => Unequivocal => Collision resistant

Hash functions with quantum capabilities

e [nitially non-collapsing introduced as a problem.

o Observe that it is feasible to be CR and non-collapsing: due to no-cloning, despite the
uncertainty in a pre-image set A(y) this state cannot be cloned and measured twice to break
collision resistance.

o What is the potential problem: non-committing hashing - [U16]

o However it can also be a good thing

e (Classically) Collision Resistant & non-collapsing

o Application: quantum lightning [Z17] (a stronger version of quantum money)
m Gen =>bolt
m Verify(bolt) => bolt, serial number.
m Not possible to create two distinct bolts with the same serial.

e (Classically) Collision resistant & equivocal
o More applications! Quantum lightning => decentralized cryptocurrency, but one-shot
signatures can do more: e.g., decentralized smart contracts without PoW/erasures/VDFs

Classical
Quantum

Constructing One-Shot Signatures

Approach via one-shot Chameleon for one-bit messages

o Gen(1M): (sk,y)
e Invert(sk, b): r
e H(b,r)y

Key question: how do we implement Invert
Pick-one trick from [ARU14]. Grover’s search is adapted appropriately.
Suppose A(y) the preimage set of y

e Superposition of A(y); => elements of the form (0,r) and (1,r)
e Apply phase shift |(-1)*H(b,r) (b,r)> and diffusion | -2*| A(y) >< A(y)|

e Measure & repeat until a suitable solution is produced.
o (note: for efficiency, there should be sufficiently many r choices |A(y)| / |A(y) : H(b,r)=y| is polynomial)

‘ Classical
One-Shot Chameleon From Oracles Quantum

Quantum Oracle Classical Oracle
e Partition {0,1}" into 272 sets {U,} of size 2"2 e Partition {0,1}" into 2"2 cosets {U} of size 2"?
e Oracles e Oracles
1. H(x)=yifxeU, 1. H(x)=yifxeU,
2. Reflect(state,y) = 2. Hi(x,y)=
m Ifstate=|y, U) return-ly, U, m IfxeU,, accept
m [f state =y, 10 ,2 return |y, U y) m IfxgU*, reject
o Gen: e Gen:
1. Evaluate H on uniform superposition 1. Evaluate H on uniform superposition
2. Measure output register to get (sk, y) 2. Measure output register to get (sk, y)
m Input register collapses to uniform m Input register collapses to uniform
superposition of y’'s preimages superposition of y’s preimages
e Invert(sk, b): e Invert(sk, b):
1. Run Grover’s search using Reflect. 1. Run Grover’s search using QFT-H(-,y) QFT.
2. Retrieve uniform superposition of preimages 2. Retrieve uniform superposition of preimages
starting with b. starting with b.

3. Measure. 3. Measure.

Applications

Classical
Quantum

Applications: Budget Signatures

——
sk, vk 0«Sign(sk,(vky,vk,,0.4))

—/_
Sko, Vko Sk']a Vk1

SKoo, Skt skio, VK10 ski1,
VKoo VKo1 VKi 1

Classical

PoW Coins with Classical Communication Quantum

e To mine a new coin:
o (skgp, vky) < Gen
o Run a proof of work on vk, to generate proof 1r.
o (skg, Vko, 1) is the coin

e To send the coin:

o Receiver generates new (sk,, vk,) < Gen and sends vk, to the sender.
o Sender signs vk,: 0«Sign(sk,,vk,) and sends (vk,,1T,0) to the receiver.

Vk1 Vk2

- 0<—Sign(sk0,vk1') . o<—Sign(sk1,vk;) .

(SkO’ VkO’ Tl') (Sk1a Vk1) (Skz, Vk2)

Classical
Quantum

Pow Coins: Improvements

e Succinctness:
o Compress (vkq, 1), (VKq, 04), ..., (VK,, 0,) into succinct proof

e Protecting privacy:
o Use Zero-Knowledge, (as above)

Classical
Quantum

Ordered Signatures

e Each signature is associated with a time tag
e Security: One cannot sign a message with a “past” tag

(VKo,00) > (vkq,04) > (Vk,,0,)

0p < Sign(sko,(Vky,my,ty)) 04 <« Sign(sky,(Vky,my,ty))

e Verification:
1. Verify all signatures
2. Verlfy that ti > ti—1
e Proof of burn by signing att = «

Classical
Quantum

Public-coin Proofs of Quantumness

How can a prover convince
OSS => PPQ a verifier he is quantum

P V

(sk, vk) < Gen

vk

m m « {0,1}n
0 < Sign(sk,m) o
If a classical P is convincing then by Ver(vk,m,0) =
rewinding we could get signatures of two 1

messages => breaks one-shot

Classical
Quantum

One-Shot Signatures with Trapndoors

»
»

O9,01,VK o
A wins if;

e Ver(tr, vk, 0, og) = 1
e Ver(tr, vk, 1,04) =1

Construction: [BCMVV18]
Assumption: Learning with Errors

Summary QSig

Private Verification

Public Verification

Honest Key Generation

Quantum Retrieval Games
(unconditional)

Tokenized Signatures
(i0 + OWF)

Classical
Quantum

Dishonest Key Generation

Trapdoor One-Shot Signatures
(LWE)

One-Shot Signatures
(only w.r.t. an oracle)

Classical
Quantum

Directions

1. Constructing Equivocal hash functions
a. E.g., vialight weight hash function approach as in [Z19], other techniques?

2. OSS design approaches and security
a. Lower bounds for finding collisions against the partition oracle H, given H(x,y)
b. We based the construction on one-shot Chameleon; other design techniques?

3. OSS without oracles

a. E.g., fromiO, similarly to tokenized signatures.
Apply obfuscation to the classical oracle construction from one-shot Chameleon, is the
resulting non-oracle construction secure?

4. Succinct and ZK proofs for chains of signatures for OSS applications.

