
One-Shot Signatures and
Applications

Aggelos Kiayias
University of Edinburgh and IOG

Joint work with Ryan Amos, Marios Georgiou, Mark Zhandry
Slides credits: Marios Georgiou & AK

▨ Classical
▨ QuantumOne-Shot QSig

1. Quantum Retrieval Games
2. Tokenized Signatures
3. One-Shot Signatures

Common syntax

● Gen(1n): (sk, vk)
● Sign(sk, m): σ
● Ver(vk, m, σ): b

Correctness

If (sk, vk) ← Gen(1n) then Ver(vk, m, Sign(sk, m)) = 1 for any message m.

Security

High level: sk can sign only a single message. It collapses.

● sk: quantum
signing key

● vk: classical
verification key

▨ Classical
▨ QuantumQuantum Retrieval Games

A C
(sk, vk) ← Gen(1n) sk

σ0,σ1
A wins if:

● Ver(vk, 0, σ0) = 1
● Ver(vk, 1, σ1) = 1

Construction: Hidden Matching Problem [Gavinsky 2012]
Security: Unconditional

x1 x2

x4 x3

▨ Classical
▨ QuantumTokenized Signatures

A C
(sk, vk) ← Gen(1n) sk,vk

σ0,σ1
A wins if:

● Ver(vk, 0, σ0) = 1
● Ver(vk, 1, σ1) = 1

Construction: Hidden Cosets [CLLZ21]
Security: iO + OWF

▨ Classical
▨ QuantumOne-Shot Signatures

A C
(sk, vk) ← Gen(1n) sk,vk

σ0,σ1,vk
A wins if:

● Ver(vk, 0, σ0) = 1
● Ver(vk, 1, σ1) = 1

Constructions:
● Partition Z2n into subsets and access partition via

○ Quantum oracles
○ Classical oracles

● Plain Model: Candidate constructions by obfuscating the oracles

crs

▨ Classical
▨ QuantumOne-Shot Signatures from One-Shot Chameleon

Syntax

● Gen(1n): (sk, y)
● Invert(sk, x): r
● H(x, r): y

Correctness

If (sk, y) ← Gen(1n) then H(x, r) = y for any input x, where r ← Invert(sk, x).

Security

H is collision resistant.

Signing key
Verification key

Message

Signature

Reduction
If one can sign both 0 and 1,
it can find a collision.

▨ Classical
▨ QuantumEquivocal Hash Functions

Syntax

● Gen(1n): (sk, y, Q(.))
● Equiv(sk, b): x
● H(x): y

Correctness/Equivocality

If (sk, y) ← Gen(1n) then H(x) = y and Q(x)=b for any input x, where x ← Invert(sk, b).

Security

H is collision resistant.

▨ Classical
▨ QuantumOS Chameleon and Equivocal Hash Functions

Theorem. Equivocal hash functions ⇔ One-shot Chameleon

● Gen’(1n): (sk, y’)
● Invert(sk, x’): r’
● H’(x’, r’): y

Proof “<=” we set Q to be the first bit. Define H(x) = H’(x_0, x_1…x_k-1).

For Equiv, given sk,b, run Invert(sk,b) to obtain r’ such that H’(b,r’)=y, it
follows that b||r’ satisfies the Q predicate and is a preimage.

“=>”Define H’(x’,r’) = H(r’) || Q(r’) XOR x’ and y’ = y||0
For invert(sk, x’) : run Equiv(sk, x’) to obtain r’ such that Q(r’)=x’ and H(r’)=y.
Observe that H’(x’, r’) = H(r’) || Q(r’) XOR x’ = y || x’ XOR x’ = y || 0 = y’

● Gen(1n): (sk, y, Q(.))
● Equiv(sk, b): x
● H(x): y

x’ is in {0,1}

▨ Classical
▨ QuantumThe quantum flavours of collision resistance

● Collision resistant.
○ Hard to find distinct x0, x1 such that H(x0)=H(x1)

● Unequivocal
○ No efficient adversary can find a hash y, and predicate Q such that later given b, it is possible

to find a pre-image x with Q(x)=b and H(x)=y
● Collapsing

○ Let A(y) be the preimage set of any y. Having access to a superposition of A(y) is no more
useful than having a random element of A(y).

Observe: Collapsing => Unequivocal => Collision resistant

Hash functions with quantum capabilities

● Initially non-collapsing introduced as a problem.
○ Observe that it is feasible to be CR and non-collapsing: due to no-cloning, despite the

uncertainty in a pre-image set A(y) this state cannot be cloned and measured twice to break
collision resistance.

○ What is the potential problem: non-committing hashing - [U16]
○ However it can also be a good thing

● (Classically) Collision Resistant & non-collapsing
○ Application: quantum lightning [Z17] (a stronger version of quantum money)

■ Gen => bolt
■ Verify(bolt) => bolt, serial number.
■ Not possible to create two distinct bolts with the same serial.

● (Classically) Collision resistant & equivocal
○ More applications! Quantum lightning => decentralized cryptocurrency, but one-shot

signatures can do more: e.g., decentralized smart contracts without PoW/erasures/VDFs

▨ Classical
▨ QuantumConstructing One-Shot Signatures

Approach via one-shot Chameleon for one-bit messages

● Gen(1n): (sk, y)
● Invert(sk, b): r
● H(b, r): y

Key question: how do we implement Invert

Pick-one trick from [ARU14]. Grover’s search is adapted appropriately.

Suppose A(y) the preimage set of y

● Superposition of A(y); => elements of the form (0,r) and (1,r)
● Apply phase shift |(-1)^H(b,r) (b,r)> and diffusion I -2*| A(y) >< A(y)|
● Measure & repeat until a suitable solution is produced.

○ (note: for efficiency, there should be sufficiently many r choices |A(y)| / |A(y) : H(b,r)=y| is polynomial)

▨ Classical
▨ QuantumOne-Shot Chameleon From Oracles

Quantum Oracle

● Partition {0,1}n into 2n/2 sets {Uy} of size 2n/2
● Oracles

1. H(x) = y if x ∈ Uy
2. Reflect(state,y) =

■ If state = |y, Uy〉return -|y, Uy〉
■ If state = |y, ⊥Uy〉return |y, ⊥Uy〉

● Gen:
1. Evaluate H on uniform superposition
2. Measure output register to get (sk, y)

■ Input register collapses to uniform
superposition of y’s preimages

● Invert(sk, b):
1. Run Grover’s search using Reflect.
2. Retrieve uniform superposition of preimages

starting with b.
3. Measure.

Classical Oracle

● Partition {0,1}n into 2n/2 cosets {Ui} of size 2n/2
● Oracles

1. H(x) = y if x ∈ Uy
2. H⊥(x,y) =

■ If x ∈ Uy
⊥ , accept

■ If x ∉ Uy
⊥ , reject

● Gen:
1. Evaluate H on uniform superposition
2. Measure output register to get (sk, y)

■ Input register collapses to uniform
superposition of y’s preimages

● Invert(sk, b):
1. Run Grover’s search using QFT∙H⊥(∙,y) QFT.
2. Retrieve uniform superposition of preimages

starting with b.
3. Measure.

Applications

▨ Classical
▨ QuantumApplications: Budget Signatures

sk, vk

sk1, vk1sk0, vk0

sk01,
vk01

sk00,
vk00

sk11,
vk11

sk10, vk10

σ←Sign(sk,(vk0,vk1,0.4))

▨ Classical
▨ QuantumPoW Coins with Classical Communication

● To mine a new coin:
○ (sk0, vk0) ← Gen
○ Run a proof of work on vk0 to generate proof π.
○ (sk0, vk0, π) is the coin

● To send the coin:
○ Receiver generates new (sk1, vk1) ← Gen and sends vk1 to the sender.
○ Sender signs vk1: σ←Sign(sk0,vk1) and sends (vk0,π,σ) to the receiver.

(sk0, vk0, π) (sk1, vk1)

vk1

σ←Sign(sk0,vk1)

(sk2, vk2)

vk2

σ←Sign(sk1,vk2)

▨ Classical
▨ QuantumPow Coins: Improvements

● Succinctness:
○ Compress (vk0, π), (vk1, σ1), …, (vkn, σn) into succinct proof

● Protecting privacy:
○ Use Zero-Knowledge, (as above)

▨ Classical
▨ QuantumOrdered Signatures

● Each signature is associated with a time tag
● Security: One cannot sign a message with a “past” tag

(vk0,σ0) (vk1,σ1)

σ0 ← Sign(sk0,(vk1,m1,t1))

(vk2,σ2)

σ1 ← Sign(sk1,(vk2,m2,t2))

● Verification:
1. Verify all signatures
2. Verify that ti > ti-1

● Proof of burn by signing at t = ∞

▨ Classical
▨ QuantumPublic-coin Proofs of Quantumness

P V

crs

(sk, vk) ← Gen
vk

m ← {0,1}nm

σ ← Sign(sk,m) σ

Ver(vk,m,σ) =
1

How can a prover convince
a verifier he is quantum OSS => PPQ

If a classical P is convincing then by
rewinding we could get signatures of two
messages => breaks one-shot

▨ Classical
▨ QuantumOne-Shot Signatures with Trapdoors

A C
(sk, vk) ← Gen(1n) sk,vk

σ0,σ1,vk
A wins if:

● Ver(tr, vk, 0, σ0) = 1
● Ver(tr, vk, 1, σ1) = 1

Construction: [BCMVV18]
Assumption: Learning with Errors

crs(tr)

▨ Classical
▨ QuantumSummary QSig

Honest Key Generation Dishonest Key Generation

Private Verification Quantum Retrieval Games
(unconditional)

Trapdoor One-Shot Signatures
(LWE)

Public Verification Tokenized Signatures
(iO + OWF)

One-Shot Signatures
(only w.r.t. an oracle)

▨ Classical
▨ QuantumDirections

1. Constructing Equivocal hash functions
a. E.g., via light weight hash function approach as in [Z19], other techniques?

2. OSS design approaches and security
a. Lower bounds for finding collisions against the partition oracle H, given H⊥(x,y)
b. We based the construction on one-shot Chameleon; other design techniques?

3. OSS without oracles
a. E.g., from iO, similarly to tokenized signatures.

Apply obfuscation to the classical oracle construction from one-shot Chameleon, is the
resulting non-oracle construction secure?

4. Succinct and ZK proofs for chains of signatures for OSS applications.

