One-Shot Signatures and Applications

Aggelos Kiayias University of Edinburgh and IOG Joint work with Ryan Amos, Marios Georgiou, Mark Zhandry Slides credits: Marios Georgiou & AK

ClassicalQuantum

One-Shot QSig

- 1. Quantum Retrieval Games
- 2. Tokenized Signatures
- 3. One-Shot Signatures

Common syntax

- Gen(1ⁿ): (sk, vk)
- Sign(sk, m): σ
- Ver(vk, m, σ): b

Correctness

If $(sk, vk) \leftarrow Gen(1^n)$ then Ver(vk, m, Sign(sk, m)) = 1 for any message m.

Security

High level: sk can sign only a single message. It collapses.

One-Shot Signatures from One-Shot Chameleon

If $(sk, y) \leftarrow Gen(1^n)$ then H(x, r) = y for any input x, where $r \leftarrow Invert(sk, x)$.

Security

H is collision resistant.

Equivocal Hash Functions

Syntax

- Gen(1ⁿ): (sk, y, Q(.))
- Equiv(sk, b): x
- H(x): y

Correctness/Equivocality

If $(sk, y) \leftarrow Gen(1^n)$ then H(x) = y and Q(x)=b for any input x, where $x \leftarrow Invert(sk, b)$.

Security

H is collision resistant.

OS Chameleon and Equivocal Hash Functions

Theorem. Equivocal hash functions ⇔ One-shot Chameleon

- Gen(1ⁿ): (sk, y, Q(.))
- Equiv(sk, b): x
- H(x): y

- Gen'(1ⁿ): (sk, y')
- Invert(sk, x'): r'

• H'(x', r'): y

Proof "<=" we set Q to be the first bit. Define $H(x) = H'(x_0, x_1...x_{k-1})$.

For Equiv, given sk,b, run Invert(sk,b) to obtain r' such that H'(b,r')=y, it follows that b||r' satisfies the Q predicate and is a preimage.

"=>"Define H'(x',r') = H(r') || Q(r') XOR x' and y' = y||0 For invert(sk, x') : run Equiv(sk, x') to obtain r' such that Q(r')=x' and H(r')=y. Observe that H'(x', r') = H(r') || Q(r') XOR x' = y || x' XOR x' = y || 0 = y'

The quantum flavours of collision resistance

- Collision resistant.
 - Hard to find distinct x0, x1 such that H(x0)=H(x1)
- Unequivocal
 - No efficient adversary can find a hash y, and predicate Q such that later given b, it is possible to find a pre-image x with Q(x)=b and H(x)=y
- Collapsing
 - Let A(y) be the preimage set of any y. Having access to a superposition of A(y) is no more useful than having a random element of A(y).

Observe: Collapsing => Unequivocal => Collision resistant

Hash functions with quantum capabilities

- Initially non-collapsing introduced as a problem.
 - Observe that it is feasible to be CR and non-collapsing: due to no-cloning, despite the uncertainty in a pre-image set A(y) this state cannot be cloned and measured twice to break collision resistance.
 - What is the potential problem: non-committing hashing [U16]
 - However it can also be a good thing
- (Classically) Collision Resistant & non-collapsing
 - **Application:** quantum lightning [Z17] (a stronger version of quantum money)
 - Gen => bolt
 - Verify(bolt) => bolt, serial number.
 - Not possible to create two distinct bolts with the same serial.
- (Classically) Collision resistant & equivocal
 - More applications! Quantum lightning => decentralized cryptocurrency, but one-shot signatures can do more: e.g., decentralized smart contracts without PoW/erasures/VDFs

Constructing One-Shot Signatures

Approach via one-shot Chameleon for one-bit messages

- Gen(1ⁿ): (sk, y)
- Invert(sk, b): r
- H(b, r): y

Key question: how do we implement Invert

Pick-one trick from [ARU14]. Grover's search is adapted appropriately.

Suppose A(y) the preimage set of y

- Superposition of A(y); => elements of the form (0,r) and (1,r)
- Apply phase shift $|(-1)^{H(b,r)}(b,r)\rangle$ and diffusion $||-2^*||A(y)\rangle < A(y)|$
- Measure & repeat until a suitable solution is produced.
 - (note: for efficiency, there should be sufficiently many *r* choices $|A(y)| / |A(y) : H(\underline{b},r)=y|$ is polynomial)

One-Shot Chameleon From Oracles

 \square Classical Quantum

Quantum Oracle

- Partition $\{0,1\}^n$ into $2^{n/2}$ sets $\{U_v\}$ of size $2^{n/2}$
- Oracles
 - 1. H(x) = y if $x \in U_y$
 - 2. Reflect(state,y) = (x + y) = (x + y)
 - If state = $|y, U_y\rangle$ return - $|y, U_y\rangle$ If state = $|y, \perp U_y\rangle$ return $|y, \perp U_y\rangle$
- Gen:
 - 1. Evaluate H on uniform superposition
 - Measure output register to get (sk, y)
 - Input register collapses to uniform superposition of y's preimages
- Invert(sk, b):
 - 1. Run Grover's search using Reflect.
 - 2. Retrieve uniform superposition of preimages starting with *b*.
 - 3 Measure.

Classical Oracle

- Partition $\{0,1\}^n$ into $2^{n/2}$ cosets $\{U_i\}$ of size $2^{n/2}$
- Oracles

1.
$$H(x) = y$$
 if $x \in U_y$

If
$$x \in U_{y^{\perp}}$$
, accept

- Gen:
 - Evaluate H on uniform superposition 1.
 - Measure output register to get (sk, y) 2.
 - Input register collapses to uniform superposition of y's preimages
- Invert(sk, b):
 - 1. Run Grover's search using QFT·H⁺(·,y) QFT.
 - Retrieve uniform superposition of preimages 2. starting with b.
 - 3. Measure.

Applications

Applications: Budget Signatures

PoW Coins with Classical Communication

- To mine a new coin:
 - $(sk_0, vk_0) \leftarrow Gen$
 - Run a proof of work on vk_0 to generate proof π .
 - \circ (sk₀, vk₀, π) is the coin
- To send the coin:
 - Receiver generates new $(sk_1, vk_1) \leftarrow Gen$ and sends vk_1 to the sender.
 - Sender signs vk_1 : σ←Sign(sk_0 , vk_1) and sends (vk_0 ,π,σ) to the receiver.

Pow Coins: Improvements

- Succinctness:
 - \circ Compress (vk_0, \pi), (vk_1, \sigma_1), ..., (vk_n, \sigma_n) into succinct proof
- Protecting privacy:
 - Use Zero-Knowledge, (as above)

Ordered Signatures

- Each signature is associated with a time tag
- Security: One cannot sign a message with a "past" tag

 \square

Classical

- Verification:
 - 1. Verify all signatures
 - 2. Verify that $t_i > t_{i-1}$
- Proof of burn by signing at t = ∞

Summary QSig

	Honest Key Generation	Dishonest Key Generation
Private Verification	Quantum Retrieval Games (unconditional)	Trapdoor One-Shot Signatures (LWE)
Public Verification	Tokenized Signatures (iO + OWF)	One-Shot Signatures (only w.r.t. an oracle)

Directions

- 1. Constructing Equivocal hash functions
 - a. E.g., via light weight hash function approach as in [Z19], other techniques?
- 2. OSS design approaches and security
 - a. Lower bounds for finding collisions against the partition oracle H, given $H^{\perp}(x,y)$
 - b. We based the construction on one-shot Chameleon; other design techniques?

3. OSS without oracles

- a. E.g., from iO, similarly to tokenized signatures.
 Apply obfuscation to the classical oracle construction from one-shot Chameleon, is the resulting non-oracle construction secure?
- 4. Succinct and ZK proofs for chains of signatures for OSS applications.