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What are graphical calculi?

As the name suggests, graphical calculi allow you to do math
pictorially.

They derive their formal strength from Category Theory.

They have been applied to various fields, such as functional
programming, linguistics, linear algebra and most importantly
quantum computing.
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String Diagrams

This is a wire. It represents a
‘system’ of sorts. A A



String Diagrams

This is a process, turning a
system A into a system B. fA B



String Diagrams

The process that ‘does nothing’
is simply not drawn. A A



String Diagrams

Processes can be composed if
their inputs and outputs match. fA

B g C



String Diagrams

Only topology matters. We can
deform these pictures as long as
connectivity stays as is.

f
A

B

g
C



String Diagrams

We can also consider multiple
systems at the same time.

A A

B B



String Diagrams

And swap systems’ places. A B

B A



String Diagrams

We also have a trivial system,
which we don’t draw. I I



String Diagrams

Processes can act on multiple
systems at the same time. f

A

B

C

D

E



String Diagrams

We can also compose processes
in parallel.

fA C

gB D



String Diagrams

Finally, some equations hold.

A A

B B

=

A A

B B
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Example: Sets and Functions

A system is just a set.
A A



Example: Sets and Functions

A process is a function between
sets. fA B



Example: Sets and Functions

This is the identity function
sending every element to itself.

A → A

a 7→ a

A A



Example: Sets and Functions

Just function composition:

A
g◦f−−→ C

(g ◦ f )(a) = g(f (a))
fA

B g C



Example: Sets and Functions

This is the cartesian product

A× B

A A

B B



Example: Sets and Functions

The swap is the function

A× B → B × A

(a, b) 7→ (b, a)

A A

B B



Example: Sets and Functions

The trivial system is the
singleton set.

I := {∗}

And indeed:

∀X .X × {∗} ≃ X ≃ {∗} × X

I I



Example: Sets and Functions

Parallel composition of

A
f−→ C B

g−→ D

is just:

A× B → C × D

(a, b) 7→ (f (a), g(b))

fA C

gB D



Why does this work?

A very deep theorem in category theory says that the calculus we
just described is sound and complete with respect to free
symmetric strict monoidal categories (FSSMCs).

Sound means that whatever can be proved graphically can be
proved in a FSSMC.

Complete means the opposite: Whatever can be proved in a
FSSMC can be proved by means of graphical manipulations.



Why does this work?

A very deep theorem in category theory says that the calculus we
just described is sound and complete with respect to free
symmetric strict monoidal categories (FSSMCs).

Sound means that whatever can be proved graphically can be
proved in a FSSMC.

Complete means the opposite: Whatever can be proved in a
FSSMC can be proved by means of graphical manipulations.



Why does this work?

A very deep theorem in category theory says that the calculus we
just described is sound and complete with respect to free
symmetric strict monoidal categories (FSSMCs).

Sound means that whatever can be proved graphically can be
proved in a FSSMC.

Complete means the opposite: Whatever can be proved in a
FSSMC can be proved by means of graphical manipulations.



But what is a FSSMC?

In line with traditional algebra, a FSSMC is just a symmetric
monoidal category which does not satisfy any supplemental
equation.

A lot of interesting structures can be seen as symmetric monoidal
categories. Among those the sets and functions, which is why
our example works.

Since sets and functions do not form a free symmetric monoidal
category, completeness does not hold: there are equations
expressed purely in terms of sets and functions that cannot be
proved graphically without adding more ‘stuff’.
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Example: FdHilbC

A system is a finite-dimensional
complex Hilbert space. V V



Example: FdHilbC

A process is a linear map.
fV W



Example: FdHilbC

This is the tensor product

V ⊗W

V V

W W



Example: FdHilbC

The trivial system is C, seen as
a 1-dimensional Hilbert space
on itself.

I := C

And indeed:

∀V .V ⊗ C ≃ V ≃ C⊗ V

I I



Example: FdHilbC

But the graphical calculus for
vector spaces has more stuff!
This bent wire is the linear map:

V ⊗ V ∗ → C∑
i

ai |ei ⟩ ⊗
∑
j

bj ⟨ej | 7→
∑
i,j

aibj ⟨ei |ej⟩

V

V ∗



Example: FdHilbC

But the graphical calculus for
vector spaces has more stuff!
This other bent wire is the
linear map:

C → V ∗ ⊗ V

c 7→ c
∑
i

⟨ei | ⊗ |ei ⟩

V ∗

V



Example: FdHilbC

Let’s do some calculations.

V

V ∗

V

V ≃ V ⊗ C → V ⊗ V ∗ ⊗ V 7→ C⊗ V ≃ V∑
i

ai |ei ⟩ ≃
∑
i

ai |ei ⟩ ⊗ 1 7→
∑
i

ai |ei ⟩ ⊗
∑
j

⟨ej | ⊗ |ej⟩ 7→
∑
i,j

ai ⟨ej |ei ⟩ |ej⟩

But ∑
i ,j

ai ⟨ej |ei ⟩ |ej⟩ =
∑
i ,j

δji ai |ej⟩ =
∑
i

ai |ei ⟩



Example: FdHilbC

But ∑
i ,j

ai ⟨ej |ei ⟩ |ej⟩ =
∑
i ,j

δji ai |ej⟩ =
∑
i

ai |ei ⟩

And so:

V

V ∗

V

= V V

We found a new graphical equation!



The ZX calculus

The ZX calculus is a graphical calculus that is sound and complete
with respect to the category of complex finite dimensional Hilbert
spaces of dimension 2n, so stuff that looks like

⊗
n C2 for all n.

This is qbit land.

This means that everything you can algebraically do with qubits
and quantum circuits, you can do graphically in ZX.

ZX was originally proposed by Coecke and Dunkan in 2008, and
took several ordes of researchers and almost 10 years to prove
complete.
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The ZX calculus

Before continuing, remember that computations in quantum
computing are made in a complex vector space of finite dimension
2n. n is the number of qbits we’re operating on1.

For any given qubit, we use two bases: The computational basis,
denoted |0⟩ , |1⟩ and the Hadamard basis, denoted |+⟩ , |−⟩.

They are related as follows:

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

1Yes, things can and are more complicated as you can use density matrices
and the like. We have something for that too but it’s out of scope for this talk
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The main ingredients of the ZX calculus

The main ingredients of the ZX calculus are called spiders. For
each n,m ∈ N, there are only two spiders, green and red:

...n α ... m ...n α ... m

The green spider corresponds to the linear map
⊗

n C2 →
⊗

m C2:

|0 . . . 0⟩︸ ︷︷ ︸
m

⟨0 . . . 0|︸ ︷︷ ︸
n

+e iα |1 . . . 1⟩︸ ︷︷ ︸
m

⟨1 . . . 1|︸ ︷︷ ︸
n

The red spider corresponds to the linear map
⊗

n C2 →
⊗

m C2:

|+ · · ·+⟩︸ ︷︷ ︸
m

|+ · · ·+⟩︸ ︷︷ ︸
n

+e iα |− · · · −⟩︸ ︷︷ ︸
m

⟨− · · · −|︸ ︷︷ ︸
n



The main ingredients of the ZX calculus

Notice that choosing n,m = 1 and α = 0 the green and red spider
become:

|0⟩ ⟨0|+ |1⟩ ⟨1| |+⟩ ⟨+|+ |−⟩ ⟨−|

And so2:

= =

Similarly, choosing (n,m) to be (0, 2) and (2, 0):

= =

= =

2When the phase is 0, it is customary not to write it.
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The main ingredients of the ZX calculus

Choosing (n,m) = (1, 1) and α = π instead,

π π

Correspond to a π rotation around the Z and X axis of the Bloch
sphere, respectively, and so to the Z and X Pauli matrices.

We define the Hadamard gate as:

:= π
2

π
2

−π
2

Which corresponds to the usual |+⟩ ⟨0|+ |−⟩ ⟨1|.

Every ZX diagram is made only of green/red spiders.



The main ingredients of the ZX calculus

Choosing (n,m) = (1, 1) and α = π instead,

π π

Correspond to a π rotation around the Z and X axis of the Bloch
sphere, respectively, and so to the Z and X Pauli matrices.

We define the Hadamard gate as:

:= π
2

π
2

−π
2

Which corresponds to the usual |+⟩ ⟨0|+ |−⟩ ⟨1|.

Every ZX diagram is made only of green/red spiders.



The main ingredients of the ZX calculus

Choosing (n,m) = (1, 1) and α = π instead,

π π

Correspond to a π rotation around the Z and X axis of the Bloch
sphere, respectively, and so to the Z and X Pauli matrices.

We define the Hadamard gate as:

:= π
2

π
2

−π
2

Which corresponds to the usual |+⟩ ⟨0|+ |−⟩ ⟨1|.

Every ZX diagram is made only of green/red spiders.



Rules of the ZX calculus

Different spiders can be connected by connecting their legs. Using
the definitions, the following graphical equations can be proven.
First, spiders of the same color fuse:

... α ...

... α ...

. . . = ... α+ β ...



Rules of the ZX calculus

Second, we can turn a red spider into a green spider and viceversa
using hadamards.

... α ... = ... α ...



Rules of the ZX calculus

Third, π-phase spiders slide past spiders of opposite color, and
change their sign:

π α ... = −α

π

...

π

As for 0-phase Spiders of opposite colors, they copy each other:

... = ...
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Rules of the ZX calculus

The second to last rule is called bialgebra rule:

...
... = ...

...

The very last rule is called Hopf’s rule, and says that couple of
wires connecting spiders of opposite color get deleted.

...
... = ...

...
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Soundess and completeness

Using the definitions of red and green spiders in terms of linear
maps, one can prove that all these diagrammatic equations hold.

What is very surprising is that the opposite is also true: Every
algebraic equation in finite dimensional complex Hilbert spaces of
dimension 2n can be proved diagrammatically using only the
rewriting rules listed here!
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Why should I care?

ZX calculus provides a rewriting system for quantum computing.

As ZX diagrams are basically decorated graphs, we can now apply
the last 50 years or so of research in graph rewriting to the task or
simplifying quantum circuits.
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Example: 3 CNOTs

Consider the following quantum circuit, just 3 CNOTs in series.



Example: 3 CNOTs

Let’s translate this to a ZX diagram.



Example: 3 CNOTs

Only topology matters: flip the third gate vertically.



Example: 3 CNOTs

Apply the bialgebra rule.



Example: 3 CNOTs

Then, spider fusion.



Example: 3 CNOTs

Finally, apply Hopf’s rule.



Example: 3 CNOTs

0-phase spiders are identities, so:



Example: Quantum teleportation

Consider the following quantum teleportation protocol

|ψ⟩ H

|ψ⟩ Z X



Example: Quantum teleportation

Translate it to ZX-diagrams. b0, b1 are either 0 or 1 (booleans).

b0π

b1π

b1π b0π



Example: Quantum teleportation

Apply spider fusion.

b0π

b1π

b1π b0π



Example: Quantum teleportation

Hadamard gates flip spider’s colors.

b0π

b1π

b1π b0π



Example: Quantum teleportation

Apply spider fusion again.

b0π

b1π

b1π b0π



Example: Quantum teleportation

Fuse! Fuse! Fuse!

b0π

b1π

b1π

b0π



Example: Quantum teleportation

Fuse more! Fuse more!

b0π

2b1π

b0π



Example: Quantum teleportation

Now, 2πb1 = 0 is either 0 or 2π. Since phases have period 2π,

b0π

b0π



Example: Quantum teleportation

Zero phase spiders with only two legs are identity wires!

b0π

b0π



Example: Quantum teleportation

Fuse again!

2b0π



Example: Quantum teleportation

Same argument as before, and phase is 0



Example: Quantum teleportation

Which once again means identity wires!



Thank you

That’s it from me. Thank you very much!


