Unclonable Polymers and Solution Their Cryptographic Applications

<u>Ghada Almashaqbeh</u>¹, Ran Canetti², Yaniv Erlich³, Jonathan Gershoni⁴, Tal Malkin⁵, Itsik Pe'er⁵, Anna Roitburd-Berman⁴, and Eran Tromer²

¹University of Connecticut, ²Boston University, ³Eleven Therapeutics and IDC Herzliya, ⁴Tel Aviv University, and ⁵Columbia University

Unclonable Polymers and Solution Their Cryptographic Applications

Ghada Almashaqbeh, Ran Canetti, Yaniv Erlich, Jonathan Gershoni, Tal Malkin, Itsik Pe'er, Anna Roitburd-Berman, and Eran Tromer

Legend:

- Cryptographer
- Computational biologist
- Biochemist

Unclonable

Unclonable

Self-destructive

Retrieve m

Unclonable

Self-destructive

Retrieve m, x

What we know:

Hypothetical, one-time memory devices [GKR04]

<u>What we know:</u>

Hypothetical, one-time memory devices [GKR04]

Tamper-proof, trusted hardware

Side-channel attacks, **??!** reverse engineering,...

Real-world unclonable and self-destructive memory devices

Real-world unclonable and self-destructive memory devices

Formal modeling and analysis

Real-world unclonable and self-destructive memory devices

Formal modeling and analysis

Amplification

Real-world unclonable and self-destructive memory devices

Formal modeling and analysis

Amplification

Cryptographic applications

DNA-based Data Storage (Not Us)

DNA-based Data Storage (Not Us)

*Photo from https://www.ashg.org/discover-genetics/building-blocks/

Proteins are Unclonable

Central Dogma of Molecular Biology - Francis Crick, 1957:

Proteins are Unclonable

A hypothesis (or a challenge) that is still standing for 65 years and a few billion years of evolution!

[Reading] Proteins is Destructive

10011100 ...

message m

Mass Spectrometry Instrument

*Photo from https://www.creative-proteomics.com/support/mass-spectrometry-instruments.htm

A new protein-based construction for secure storage

Synthesize m

A new protein-based construction for secure storage

A new protein-based construction for secure storage

Mix with decoy proteins

A new protein-based construction for secure storage

To retrieve m, first purify

A new protein-based construction for secure storage

To retrieve m, first purify

then read the sequence

Model (Informal)

- Can store only a small number of short messages using short keys
- The only meaningful interaction is by applying antibodies (keys)
- Each retrieval attempt consumes part of the vial
- Account for powerful adversaries

n key guesses \Rightarrow sample is destructed

• Non-negligible soundness error γ

Extension: Partially Retrievable Memory

- Store *v* messages using *v* keys
- Only *n* out *v* messages can be retrieved (n < v)

Modeling and Applications

Applications of Consumable Tokens

Digital Lockers

Password $p \in \mathcal{P}$ and message m $c = Enc_p(m)$

 $i \in \{1, \ldots, n\} : p_i \in \mathcal{P}, Dec_{p_i}(c)$

Resistant to brute search attacks

(1, *n*)-time Programs

(1, *n*)-time Programs Construction $f: \mathcal{X} \to \mathcal{Y}$

Step 1: Create a consumable token

For each $x \in \mathcal{X}$ store a unique secret message *m* in the token

Step 2: Obfuscate a program for *f*

Obfuscate a program that outputs f(x) only if the correct m corresponding to x is presented

Unclonable Cryptography

A Tale of No-cloning Paradigms—Polymer & Quantum*

*G. Almashaqbeh and R. Chatterjee. Building Unclonable Cryptography: A Tale of Two No-cloning Paradigms. Secrypt 2023

31

No-Cloning: Polymer vs. Quantum

Unclonable Polymers

- No superposition.
 - Either obtain the stored data or nothing.
- No gentle measurement that do not disturb the polymer state.
 - Any data retrieval attempt irreversibly consumes the state.
- Power gap between adversary and honest parties.
 - A powerful adversary can perform up to *n* data retrieval queries.

Polymer-based One-shot Signatures?

• Cannot be achieved!

 The power gap allows an attacker to sign up to n messages instead of just one.

Potential Construction

- (1,n)-time programs.
- Hash and sign paradigm using Chameleon hash functions [AGKZ20].

• How can we achieve it in the polymer-based setting?

- Close the power gap by devising a stronger biology construction/model.
- Or ... some new direction?!

The Road Ahead

- A hybrid no-cloning model
 - Combine quantum- and polymer-based models to obtain the best of both worlds.
 - The two models seem to be incomparable and complementary rather than alternatives.
 - Potentially obtain both bounded-execution and no-power-gap measurements/data retrieval.

Thank you!

Questions?

Digital Lockers

Password $p \in \mathcal{P}$ and message m $c = Enc_p(m)$

 $i \in \{1, \ldots, n\} : p_i \in \mathcal{P}, Dec_{p_i}(c)$

Resistant to brute search attacks

- Create *u* tokens to store *u* shares of *m*
- Map *p* into *u* token keys
- Chain the tokens together so *A* can try only *n* password guesses

In other words... Bounded-query Point Function Obfuscation

$$I_{p,m}(p') = \begin{cases} m & \text{if } p' = p \\ \bot & \text{otherwise} \end{cases}$$

• \mathcal{F}_{BPO} models obfuscation of this multi-output point function such that:

Honest party: knows *p*, one query to obtain *m* **Adversary:** Can try up to *n* password guesses

Let's construct it from consumable tokens!

Is not this immediate?

- Map p to a token key k
- Use a (1, *n*, 1)-consumable token to encode *m* under *k*

No, it is not!

- Map p to a token key k
- Use a (1, *n*, 1)-consumable token to encode *m* under *k*

BPO Construction–Attempt #2

• Secret sharing of *m*

Share $m : m_1, m_2, ..., m_u$ such that $m = \bigoplus_{i=1}^u m_i$

$$k_1 \leftarrow f_1(p) \\ k_2 \leftarrow f_2(p)$$

 $k_u \leftarrow f_u(p)$

 $Encode(k_1, m_1, 1)$ $Encode(k_2, m_2, 1)$

 $Encode(k_u, m_u, 1)$

BPO Construction–Attempt #2

Share $m : m_1, m_2, ..., m_u$ such that $m = \bigoplus_{i=1}^u m_i$

 $k_1 | m_1$

 $k_2 | m_2$

 $k_u m_u$

BPO Construction–Final Attempt

• Chaining of tokens

$$\Pr[\mathcal{A} \text{ retrieves } m] \approx \frac{n}{|\mathcal{P}|} + \left(1 - \frac{n}{|\mathcal{P}|}\right)\gamma^u$$

(1, n)-time Programs Construction

$$|\mathcal{X}| = q^{d+1}$$

$$\begin{array}{c} x \\ m_1 \\ \dots \\ m_{\omega} \end{array} \xrightarrow{if valid(c, m_1 \dots m_{\omega})} f(x) \\ f(x) \\ f(x) \\ m_{\omega} \end{array} \xrightarrow{f(x)}$$

(1, n)-time Programs Construction

Set the code distance such that only *n* valid codewords can be retrieved!