
one-shot signatures
a new blockchain paradigm



destructive vs constructive

many 
SNARKs

many 
signatures

Bitcoin
PoW

quantum
computing



destructive vs constructive

many 
SNARKs

one-shot 
signatures

many 
signatures

Bitcoin
PoW

quantum
computing



destructive vs constructive

many 
SNARKs

one-shot 
signatures

many 
signatures

Bitcoin
PoW

FRI

post-quantum
cryptography

quantum
cryptography

quantum
computing



part 1—signature chains

part 2—applications

part 3—accelerationism



part 1—signature chains

part 2—applications

part 3—accelerationism



February 2020 paper

eprint.iacr.org/2020/107



February 2020 paper

eprint.iacr.org/2020/107

rev
olutio

nary

and ig
nored



February 2020 paper

eprint.iacr.org/2020/107

rev
olutio

nary

and ig
nored



one-shot signing

private key

message



one-shot signing

private key

signaturemessage



one-shot signing

private key

signaturemessage

poof!



quantum principles

destructive measurements no cloning



quantum principles

destructive measurements no cloning



quantum principles

destructive measurements no cloning



key chaining

key pair 1 key pair 2



key chaining

key pair 1 key pair 2



key chaining

key pair 1 key pair 2 key pair 3



unforkable signature chains



stateful signature chains

i = 0 i = 1 i = 2 i = 3



stateful signature chains

i = 0 i = 1 i = 2 i = 3

in out

assert
in + 1 = out



removing slashing conditions

previous_target current_target

assert
previous_target < current_target

no double vote



removing slashing conditions

previous_source
previous_target

current_source
current_target

assert
previous_target < current_target
previous_source ≤ current_source

no double vote no surround vote



potential applicability

classical 
verifier

signature
is a SNARK



potential applicability

classical 
verifier

no quantum 
communication

no quantum 
teleportation

signature
is a SNARK



practicality—short-term memory

in out

assert
in = out

state state state state



practicality—short-term memory

in out

assert
in = out

private key refresh

state state state state



part 1—signature chains

part 2—applications

part 3—accelerationism



perfect finality

economic 
finality

perfect 
finality



perfect finality

economic 
finality

perfect 
finality

2/3 → 1/2
threshold



perfect finality

economic 
finality

perfect 
finality

2/3 → 1/2
threshold

remove
bitstrings

unlimited
validators



perfect finality

economic 
finality

perfect 
finality

2/3 → 1/2
threshold

remove
bitstrings

ultra weak 
subjectivity

unlimited
validators

full dequeue 
on finality



economic vs perfect finality

2/3 2/3

≥ 1/3
equivocations



economic vs perfect finality

2/3 2/3

≥ 1/3
equivocations

50% + 1 50% + 1

≥ 1
equivocations



liquid staking

unsafe liquid 
staking

slashing risk

leakage risk



liquid staking

unsafe liquid 
staking

slashing risk

leakage risk

safe
liquid staking



(re)staking

deterministic 
safety

liveness

slashing 
conditions

subjective 
safety



(re)staking

deterministic 
safety

subjective 
safety

liveness

slashing 
conditions



other applications

quantum 
money



other applications

quantum 
money

proof of 
location



other applications

quantum 
money

proof of 
location

safer
oracles



part 1—signature chains

part 2—applications

part 3—accelerationism



cryptographic accelerationism

motivation



cryptographic accelerationism

motivation grants

coordination business 
models



QSig



QSig

2025?



hash function competition

equivocal hash 
functions

one-shot 
signatures

~
eprint.iacr.org/2022/786



hash function competition

equivocal hash 
functions

one-shot 
signatures

~
eprint.iacr.org/2022/786

hash design 
competition



hash function competition

equivocal hash 
functions

one-shot 
signatures

~
eprint.iacr.org/2022/786

hash design 
competition

SHA3, BLAKE Poseidon, Rescue



thank you :)
justin@ethereum.org



practicality—early offchain usage

signature 
reuse

one quantum 
computer



1-bit signing

H

(x, H(x))



1-bit signing

H

(x, H(x))

x | H(x) = y

y



key generation

public key

private key

all key pairs



1-bit signing

H

(x, H(x))

x | H(x) = y

y

b



1-bit signing

H

(x, H(x))

x | H(x) = y

x | x[0] = b

y

b



1. start with a suitable 256-bit hash function H

1-bit signing



1. start with a suitable 256-bit hash function H

2. build a uniform superposition of all preimage-image pairs

○ (x, H(x)) for every 512-bit preimage x

1-bit signing



1. start with a suitable 256-bit hash function H

2. build a uniform superposition of all preimage-image pairs

○ (x, H(x)) for every 512-bit preimage x

3. observe and collapse the second register to get

○ pubkey—a random image y

○ privkey—a superposition of preimages x such that H(x) = y

1-bit signing



1. start with a suitable 256-bit hash function H

2. build a uniform superposition of all preimage-image pairs

○ (x, H(x)) for every 512-bit preimage x

3. observe and collapse the second register to get

○ pubkey—a random image y

○ privkey—a superposition of preimages x such that H(x) = y

4. to sign bit b run a fancy quantum search algorithm to find

○ signature—a preimage x such that the first bit of x is b

1-bit signing



1. start with a suitable 256-bit hash function H

2. build a uniform superposition of all preimage-image pairs

○ (x, H(x)) for every 512-bit preimage x

3. observe and collapse the second register to get

○ pubkey—a random image y

○ privkey—a superposition of preimages x such that H(x) = y

4. to sign bit b run a fancy quantum search algorithm to find

○ signature—a preimage x such that the first bit of x is b

1-bit signing

hard!


