
Simulation Experiments with Protocol Interactions in

ATM Networks

Stephen Cusack and Rob Pooley

Department of Computer Science

The University of Edinburgh

email: sdc@dcs.ed.ac.uk & rjp@dcs.ed.ac.uk

June 14, 1995

Abstract

This paper outlines ongoing work in performance evaluation of ATM networks through

the use of simulation. This work is particularly aimed at estimating the e�ects at the

application level of higher level protocol interactions. Current modelling of ATM networks

has been concentrated at the switch level. An objective of this work is to broaden the

context by examining the network performance and characteristics at a level typically seen

by network management. An object-oriented methodology and the techniques of discrete

event simulation are being investigated as a means of providing a framework in which to

conduct these experiments.

1 Introduction

Most modelling of ATM networks has concentrated on switch level modelling, often of individual

switches (see [3] for an example). This is understandable in the early stages of the design of

hardware based on this new technology, but it is not enough to understand the likely overall

performance of high bandwidth communications systems. Work on driving these switch level

models has concentrated on de�ning the characteristics of expected sources of work, most im-

portantly real time video, and the switching between these sources, for instance by de�ning a

Markov modulated Poisson process. The aim of the work described is to broaden the context

within which ATM performance is considered.

Among the issues under consideration are:

� How realistic are the workload models proposed when ATM networks are largely driven

by bridges from LANs operating Ethernet and other conventional protocols?

� What are the e�ects of protocol interactions? In particular, what impact does the possible

loss of cells in an asynchronous network have on higher level protocols operating across

such networks? Since no re-transmission is forced within the ATM network, how does the

bu�ering of messages either side of the network get a�ected?

� How can pathological conditions in an ATM network (which may bring the network down)

be recognised and possibly avoided? Which network workload states may lead to critical

conditions? Can the network recover from such states?

30/1



In order to answer this type of question, the level of analysis of ATM networks has to be

abstracted above the switch level to a model which incorporates the entire network. This level of

abstraction is that typically seen by a network manager who monitors the performance of their

network. To model at this level, a discrete event simulation framework for ATM and related

network models is being created. This is being written using an object oriented approach made

possible by the DEMOS simulation package [1]. Presently, the model constituents are in the

process of continued testing and re�nement which is leading to the design and implementation

of experiments to examine aspects of total network and combined network behaviour.

This paper is structured as follows:

� Section 2 details some of the motivation for the work in progress.

� Section 3 briey describes the features of the DEMOS simulation environment and details

the current state of the simulation model.

� Section 4 gives an indication of some of the problems and solutions already encountered.

� Section 5 describes anticipated future work.

� Section 6 gives some early conclusions.

2 Motivation for the work

2.1 Overview

ATM technology and the interest in it has reached a point where governments and public network

operators are considering ATM as a vehicle for providing B-ISDN [4, 5] services. E�ective roll-

out of ATM technology to the business and private sectors will require the understanding of

how to design ATM networks to carry both real-time and data tra�c as e�ciently as possible.

Modelling ATM networks e�ectively will require the careful design and implementation of

realistic workload models (to simulate expected tra�c on the network) and e�cient simulators.

The use of inaccurate models, however, could well lead to sub-optimal ATM network designs

being adopted in the future due to `worst case' design rules having been used. The goal of this

work is to fuse suitable workload models with e�cient simulation models to provide insights

into the design and performance of ATM networks.

2.2 Areas of interest

As mentioned in section 1, one area of interest is the validity of existing workload models in

the context of ATM networks being driven by bridges from private LAN or MAN networks.

This is of particular relevance to public network operators who will almost certainly o�er ATM

interconnection to their customers' own private networks. It is planned that appropriate models

to simulate the expected tra�c from this variety of source will be developed as `plug in' modules

for the simulator under development. This is in addition to appropriate `plug in' modules

designed to simulate existing single applications (such as MPEG video transmission).

The e�ects of protocol interaction are also an important area of study. As ATM networks

have no standard method of cell re-transmission (cells from higher level protocol data packets

may be dropped anywhere en route) the simulator is being designed such that even at the high

level of abstraction the e�ect of cell loss on the higher level protocols controlling transmission

30/2



may be observed. It will be important to see if the advantages of a high speed cell transmission

system are compromised by the delays caused by the retransmission of data packets which arrive

incomplete at their destination. Performing this analysis with simulated entire networks, rather

than two applications sharing a common switch, is particularly relevant.

The other area of interest highlighted so far from the high level of abstraction concerns net-

work management. Simulating an entire network will allow sensitivity analysis to be performed

on the network such that the network can be forced into abnormal states and the associated

behaviour monitored. Combinations of conditions could be forced onto the network to check

the cumulative e�ect. An exciting possibility of this work is that it could lead to simpli�ed

models and operational guidelines for network managers as to what conditions may cause their

network to either fail or enter an unstable state.

3 The Object Framework

3.1 Overview

This section details the structure of the �rst attempt to provide a suitable framework for the

experiments envisioned. As the work is still in progress, the choice of tool may alter as problems

and changing needs arise. A choice had to be made as to an appropriate simulation tool for the

work and the following properties were deemed essential:

� A process based language utilising discrete events.

� An object oriented design capability for easy scalability and re-use of the objects created.

� For the system to be e�cient.

� For the system to be simple enough for rapid prototyping and modi�cation of the model.

For the `�rst cut' of the simulator the DEMOS (Discrete Event Modelling On SIMULA) sys-

tem was chosen. SIMULA [2] itself contains su�cient simulation primitives to build simulation

models, but leaves many of the implementation issues up to the user. DEMOS provides a

standardised approach by allowing the creation of models composed of entities. Entities may

compete for speci�ed resources, give and take items from bu�ers, interrupt and restart each

other, wait for speci�ed events to occur and wait for speci�ed amounts of simulation time.

Simulation models can be built relatively quickly from the primitives supplied in DEMOS. Par-

ticularly useful features include a selection of random number distributions and the automatic

reporting facilities available. An example of the use of DEMOS to model WAN protocols may

be seen in [6].

3.2 Basic DEMOS constructs used

The following classes of DEMOS object were used:

BIN representing an unbounded bu�er.

WaitQ representing a master/slave relationship, where one process gains temporary control of

another.

CondQ where a process can WaitUntil a condition is true. An entity which can alter the con-

dition issues a Signal command to prompt waiting processes to reevaluate the condition.

30/3



INTERRUPT where one process can awaken another from a Hold and set a ag for it to

check.

3.3 Increasing the e�ciency of the simulations

As regards e�ciency, it is clear that trying to simulate an entire network by individually simu-

lating each point-to-point cell transmission is impractical even on a powerful computer. In this

work the lowest form of transmission is as a group (or `unit' as it is called in the software) of

cells. One way of imagining a unit is as a burst of cells. The thinking behind this approach is

that we are mainly interested in `critical' events such as cell loss due to bu�er overow. During

non-critical activity the successful transmission of a group of cells is represented by a time lag

(a DEMOS Hold command) equal to the time taken for the transmission thus avoiding the need

for a great deal of computation. When a critical event occurs the entities logically connected

either side of the bu�er involved are designed to interrupt each other appropriately. On each

interrupt the state of the bu�er is altered to accurately mirror the state of the bu�er at that

simulation time (i.e. the bu�er contains the correct number of cells). In the worst case scenario,

the model e�ectively degenerates to simulating cell by cell transmission into and out of the

bu�er to ensure that cells are lost only when they really would be.

It is hoped that for really large scale simulations this approach will ensure that large numbers

of cell transmissions can be simulated in reasonable amounts of compute time.

3.4 Abstracting from real networks

A typical ATM network may comprise of workstations connected either directly to the ATM

network or via a multiplexing router or bridge from a LAN or MAN. The ATM network itself

will contain switches for routeing cells to di�erent destinations. Of course, a workstation or

LAN/MAN may well be directly connected to a switch. Clearly the basic building blocks of a

simulation model hoping to simulate such networks must at least include the following building

blocks:

� A generic `source' entity used to simulate the various types of tra�c representing the

communication from computer applications.

� A generic `sink' to receive communicated cells from a source entity.

� A `multiplexor' entity to simulate a shared transmission line.

� A `de-multiplexor' entity to complement the multiplexor.

� A `switch' entity to route cells between di�erent virtual channels and paths.

It was realized that a completely separate switch entity was unnecessary as the function

of a switch could be performed by connecting a multiplexor and demultiplexor appropriately.

With this in mind the entities described in the following sections were designed with consistent

interfaces to accommodate the modelling of arbitrary ATM networks.

30/4



3.4.1 The Unit entity

The `unit' in this work is the lowest form of cell transmission. It is best to think of a unit as

a typical `burst' of cells. The unit entities passed around in the simulation carry information

such as the original number of cells in the unit and a counter detailing how many cells get lost

during the transmission lifetime. A simple addressing scheme is also implemented for use in

switches (multiplexor/demultiplexor pairs).

3.4.2 The Basic Source and Sink entities

The basic source entity generates units (representing bursts of cells) governed by a user de�ned

method (e.g. in an example source a Poisson distribution is used to determine the number of

cells in a unit and a negative exponential distribution is used to determine the length of time

between units). VBR and CBR services can be represented by appropriately setting the number

of cells per unit and the inter-unit generation times. The source is connected to a DEMOS BIN

resource (e�ectively a integer counter representing the number of items in a bu�er as opposed

to actually storing the items) acting as a bu�er. A DEMOS WaitQ is also connected to store

unit entities passing from the source to its sink. The source is passed a reference (the SIMULA

name for a pointer) to the entity acting as its sink as well as a parameter which sets the source's

transmission speed.

The basic sink entity also has connections for a BIN resource and a WaitQ. Several parameters

are passed to the sink including a reference to its source entity and a number to set the cell

receipt speed. The source and sink entities are also passed the user selected size of the bu�er

interconnecting them.

Connecting a basic source and sink together with an appropriate bu�er (BIN resource) and

WaitQ connected between them simulates the classic producer-bu�er-consumer problem. The

action of the source is to generate unit entities according to the chosen method and then to

simulate the transmission of this number of cells into the bu�er. The �rst step is to place the

newly created unit entity into the WaitQ to be serviced by the sink entity. The next step is to

interrupt the sink entity if it is currently receiving cells. This forces the sink to update the BIN

by removing the number of cells it would have received by that simulation time. This ensures

that the true amount of free space is available in the bu�er. The time taken for the transmission

is the product of the source transmission speed and the number of cells in the unit. If there is

enough space in the bu�er for all of the cells in the unit the source updates the BIN to represent

the placing of the cells in the bu�er and then holds for the transmission time before wakening to

produce the next unit as appropriate. If there is not enough space for all of the cells in the unit

the source updates the BIN with the number of cells it can send and holds for a time to mark

the transmission of those cells. It then wakes and interrupts the sink to update the BIN status

again. This repeats until the source reaches the end of the time allocated for the transmission

of that unit. If any cells of the unit remain unsent then they have been lost and the appropriate

counter in the unit is set accordingly.

The sink entity coopts unit entities produced by the source and placed in the WaitQ for

servicing. The sink simulates the emptying of the bu�er by holding for a time to represent

the time it would take to remove the cells from the bu�er (simply the product of the receipt

speed and the number of cells to receive). When the required time is up, the sink wakes and

updates the BIN accordingly unless it is woken beforehand by an interrupt from the source. If an

interrupt occurs, the sink calculates how many cells it would have removed from the bu�er by

that simulation time and updates the BIN accordingly. More complex interactions occur when

30/5



the source and sink are dealing with the same unit at the same time. The added complication

here is that the sink does not yet know whether the source will lose any cells. If the source loses

cells it produces a special interrupt which is only processed if the source and sink are dealing

with the same unit. Upon this type of interrupt the sink has to change several parameters

such that it will only try to receive the number of cells successfully transmitted in that unit.

Once the sink has waited for a time representing the number of cells successfully transmitted

it may either hold (for some speci�ed time) or immediately wait until a new unit arrives from

the source in the WaitQ.

Slight variants of the source and sink entities have been created for use with the multiplexor

and demultiplexor entities as described in section 3.4.3.

3.4.3 The Multiplexor and Demultiplexor entities

The multiplexor entity is designed to communicate with slightly modi�ed sink entities. The

di�erence in the sink entity is that it interrupts the multiplexor to determine whether it is

allowed to start removing cells from its input bu�er. Multiple instantiations of these sinks

may be connected to the multiplexor. The multiplexor contains some method of call admission

(currently a very simple bespoke bandwidth sharing algorithm) provided by the user. When

a sink is allowed to proceed it interacts with its source and BIN as before. The multiplexor

passes details of the unit being accepted by the sink to the demultiplexor. A DEMOS CondQ

is used to allow the sinks connected to a multiplexor to determine whether they are allowed to

receive. A sink simply issues a WaitUntil command depending on a logical condition linked to

the CondQ. When the multiplexor changes a condition it issues a Signal command to the CondQ

which wakes each sink holding in a WaitUntil and makes them reevaluate the condition. The

multiplexor holds references to each sink and conversely each sink holds the reference to the

multiplexor. This allows each entity to examine and set parameters in the other to avoid the

need for messy global parameters.

The demultiplexor entity communicates with slightly modi�ed source entities. The di�erence

to the source entity is that the user supplied mechanism for generating units has been replaced

by the demultiplexor passing the unit received from the multiplexor directly to the source. The

source uses this information to interact with its attached sink and BIN as before. Once again

entity references are used to avoid messy global variables.

As previously stated the need for a separate switch entity has been avoided by intending that

the multiplexor and demultiplexor entities (along with the modi�ed source and sink entities)

can be used as a switch. To enable this, the multiplexor and demultiplexor have been provided

with abilities to introduce extra delay on unit transmission and to decode the simple addressing

scheme carried by each unit. Suitable parameter passing adjusts the behaviour as desired.

3.5 The current state of the Object Framework

So far working versions of each of the entities described in section 3.4 have been produced and are

in the process of continual re�nement. Work is continuing on the veri�cation of the behaviour

of the entities when interconnected to form basic building blocks such as a switch. Figure 1

shows an example of how you would build a simple network consisting of several workstations

connected to a switch from the current selection of framework entities.

30/6



WaitQ

Bin

WaitQ

Bin

WaitQ

Bin

WaitQ

Bin

Workstations

Switch

Workstations
Source SinkSink

WaitQ

Bin

CondQ

Mux/Demux

Source SinkSink

Network to simulate DEMOS model of network

Figure 1: Simulating a simple network with the present object framework.

4 Early Experiences

At this early stage in the work it is possible to comment on some of the strengths and weaknesses

of the approach and the tools chosen.

DEMOS has proved to be a reliable and exible tool with which to build the object frame-

work. The use of objects has led to some fairly rapid entity implementations. As long as the

choice of interface remains stable the design of the entity may be modi�ed easily. This approach

will allow the design of workload `plug in' modules to build in realistic tra�c pro�les. The main

advantage of an object oriented approach is in the ease of creating simulation experiments.

Producing an ad hoc network model requires the appropriate entities to be instantiated and

`wired up' to each other and their appropriate resources and queues. In this way successful

validation of small scale experiments will allow larger experiments to be constructed quickly.

There is little experience of how the DEMOS system will cope with very large simulations but

this is of little relevance when developing the techniques for this approach as we only require

small simulations for validation.

A di�cult problem to solve is how to abstract the model from real networks. The `unit'

entity approach is the �rst attempt at trying to provide an e�cient yet accurate approach to

handling large numbers of simulated cell transmissions. It is possible, therefore, that changes

may have to be made to this approach if and when problems arise.

The DEMOS system provides a selection of text based automatic reporting for each simu-

lation. However, the most useful output for experiment validation is the event trace �le which

details each and every action for each and every entity. At the best of times the trace is fairly

indigestible, but the timing diagrams derived by hand can be essential in ironing out interaction

problems. A better approach would be to consider the implementation of a graphical report-

ing system to produce suitable timing information automatically. The authors are currently

investigating a number of approaches.

5 Future Work

As this is clearly a work in progress the basic entities described in this paper will have to evolve

in order to provide the object framework required for the experiments envisioned. The most

obvious defect at this time is the `one way' nature of data ow, i.e. sources just being able to send

30/7



to sinks. One possible re�nement may well be to have composite entities which contain both

a source and a sink and the data reporting facilities consistent with the higher level protocol

being investigated. Another obvious re�nement is to merge the actions of the multiplexor

and demultiplexor into one general `muxdemux' entity to allow seamless bidirectional ow.

The muxdemux entity would be able to connect to either sources or sinks and handle them

appropriately. Experience gained from entity development thus far will all be very useful in the

construction of such entities.

Other work will concentrate on the handling of data units across the simulation models.

This is the �rst attempt at providing an e�cient level of abstraction. As the simulation models

grow this approach may even be too detailed and other approaches such as replacing certain key

entities with statistical distributions may be necessary. For example, a compound switch entity

can be produced at present which contains internally a multiplexor and a demultiplexor. The

entity initialisation of the components of such a switch entity is performed through appropriate

parameter passing. As the level of abstraction increases we may wish to replace this switch

component with a simpler entity which utilises a statistical distribution to simulate the switch

function. As long as the interfaces to the new switch remain the same, a trivial code replacement

is all that is required (see �gure 2).

Object
Interface

Object
Interface

CondQ Mux Demux

Object
Interface

Object
Interface

Composite Switch entity Replacement single Switch entity

Figure 2: Replacing a compound switch entity in the object framework

In the short term, some work will be concentrated on providing a simpler and quicker

form of experiment validation. The current method of following trace �les by hand is far too

cumbersome. Graphical techniques appear to have the most promise in this area.

In the longer term, experiments on a large scale will have to be planned and implemented

in order to try and answer in detail some of the questions posed in section 2.

6 Conclusions

The early work completed thus far has formed a basic framework for simulation of ATM net-

works. The object oriented design approach and the choice of DEMOS as the implementation

system look promising for future development. Much work needs to be done to evolve the cur-

rent simulator into a system powerful enough to perform the experiments listed. However, as

results look promising from this early work the authors are con�dent of being able to produce

such a system.

30/8



References

[1] G.M. Birtwistle \Discrete Event Modelling on Simula", Macmillan Press, 1979.

[2] G.M. Birtwistle et al. \SIMULA BEGIN", Studentletteratur, Lund, Sweden, 1973.

[3] Joan Garc

�

ia-Hara et al. \ATMSWSIM An E�cient, Portable and Expandable ATM

SWitch SIMulator Tool", Lecture Notes in Computer Science 794, Austria, May 1994

[4] Rainer H�andel et al. \ATM Networks - Concepts, Protocols, Applications", 2nd

Edition, Addison-Wesley, 1994.

[5] Craig Partridge \Gigabit Networking", Addison-Wesley, 1994.

[6] R.J. Pooley and G.M. Birtwistle \Process Based Modelling of Communications Pro-

tocols" in S. Schoemaker Ed Computer Networks and Simulation III, North Holland,

1986, pp 81-101

30/9


