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Abstract

We consider an open queueing network consisting of an arbitrary number

of queues in series. We assume that the arrival process into the �rst queue

and the service processes at the individual queues are jointly stationary and

ergodic, and that the mean inter-arrival time exceeds the mean service time

at each of the queues. Starting from Lindley's recursion for the waiting

time, we obtain a simple expression for the total delay (sojourn time) in the

system. Under some mild additional assumptions, which are satis�ed by

many commonly used models, we show that the delay distribution has an

exponentially decaying tail and compute the exact decay rate. We also �nd

the most likely path leading to the build-up of large delays. Such a result

is of relevance to communication networks, where it is often necessary to

guarantee bounds on the probability of large delays. Such bounds are part

of the speci�cation of the quality of service desired by the network user.

1 Introduction

The problem considered here is motivated by applications to the design and oper-

ation of ATM networks. These are intended to integrate di�erent tra�c types like

voice, video and data, and aim to exploit the e�ciency gains of statistical multi-

plexing while at the same time providing a guaranteed quality of service (QoS) to

the user. In an ATM network, the incoming tra�c from each call is split into cells

of �xed size (53 bytes). The cells from various calls are multiplexed onto a link for

transmission, either on a �rst come �rst served basis, or using some priority rules.

There are �nite bu�ers at each node, and if these are full when a cell arrives, then

the cell is lost.

Statistical multiplexing implies that guaranteed bandwidth is not available to

the user, and therefore deterministic service criteria cannot be met. The QoS

�
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criteria take the form of bounds on the probability of cell loss, and of end-to-

end transmission delays exceeding a threshold. Typically, we would like these

probabilities to be of the order of 10

�8

or lower. While data tra�c is sensitive

to cell loss but usually not to transmission delays, the opposite is the case for

voice and video. The problem facing the network operator is that of �nding a call

admission policy which maximizes network utilization while ensuring that accepted

calls enjoy a speci�ed quality of service. Therefore, it is of interest to estimate cell

loss probabilities, and the probability of large delays, given a description of the

tra�c characteristics. These are typically obtained in the context of a queueing

model of the communication network.

Exact expressions for the probabilities of interest are available only for a few

special network models, namely Jackson networks and networks of quasi-reversible

queues(see Kelly [6]). The assumptions on the tra�c processes embodied in these

models are unrealistic for the tra�c types encountered in ATM networks. Fur-

thermore, their use results in unduly optimistic performance predictions.

There has recently been considerable interest in the use of large deviations

techniques to estimate cell loss probabilities. The case of a single deterministic

queue multiplexing several independent tra�c streams with fairly general arrival

processes is considered by de Veciana and Walrand [3]. They show that the queue

size distribution has an exponentially decaying tail and compute the decay rate.

The result is extended to intree networks of such queues by Chang [2]. In [5],

Ganesh and Anantharam obtain the decay rate of the tail distribution for two

exponential server queues in series fed by renewal arrivals. In a recent remarkable

paper, Bertsimas et.al. [1] consider acyclic queueing networks with fairly general

arrival processes, and independent, identically distributed (i.i.d.) service times

at each queue. They compute the decay rate of the stationary waiting time and

queue length distributions at each node in the network.

The cell loss probability when the number of bu�ers at each queue is large is

related directly to the tail distribution of the queue size. The relation between

total delay in a network and waiting times at the individual queues is complicated

by possible dependencies between these waiting times. In this paper, we consider

the problem of estimating the total delay for a network consisting of an arbitrary

number of queues in series, with quite general arrival and service processes. Our

assumptions regarding these processes are stated in Section 3. We show that

the distribution of the total sojourn time in the tandem has an exponentially

decaying tail, and obtain the rate of decay. We introduce some notation and state

the problem formally in the next section. We then use Lindley's recursion to

obtain an expression for the total sojourn time in terms of the service times at the

individual nodes and the inter-arrival times. We estimate the tail of the sojourn

time distribution in Section 3.
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2 The Sojourn Time in Tandem Queues

Consider a system of M queues in series. Customers arrive into the system from

outside requiring service at each of the M nodes. The arrival process and the

required service times may be modeled jointly as a stochastic process. Customers

enter the system at the �rst queue, traverse the queues in sequence, and leave the

system after completing service at the last queue. There is a single server at each

queue. The service discipline is �rst come �rst served (FCFS) and work-conserving

(a server is never idle when its queue is non-empty). We assume that the system

is in operation for all time, i.e., for t 2 (�1;1). We pick an arbitrary customer

that we designate customer zero. Let S

m

n

denote the service time required by

the n

th

customer at the m

th

queue, m = 1; : : : ;M , n = : : : ;�1; 0; 1; : : :. Let T

m

n

denote the inter-arrival time of the n

th

customer at the m

th

queue, i.e., the time

between the arrival of the n

th

and (n� 1)

th

customers to this queue. De�ne

�

m

i;j

=

j

X

k=i

T

m

k

; �

m

i;j

=

j

X

k=i

S

m

k

As usual, if i > j then the sum is empty and is taken to be zero. We assume that

T

1

n

and S

m

n

; m = 1; : : : ;M are jointly stationary and ergodic. We also assume that

the system is stable, namely, that the mean inter-arrival time of customers exceeds

their mean service time at each of the queues. In other words, ET

1

> ES

m

for all

m = 1; : : : ;M .

Let W

m

n

and D

m

n

denote the waiting time and sojourn time respectively of the

n

th

customer in the m

th

queue. The waiting time is the time from arrival until

the start of service, and the sojourn time the time from arrival until the end of

service. The waiting times satisfy Lindley's recursion (see [7])

W

m

n

= (W

m

n�1

+ S

m

n�1

� T

m

n

)

+

; m = 1; : : : ;M;

where X

+

denotes maxfX; 0g. It was shown by Loynes [7] that, if the arrival and

service time distributions satisfy the stability criterion, then Lindley's recursion

has the solution

W

m

n

= max

j

m

�n

(�

m

j

m

;n�1

� �

m

j

m

+1;n

) m = 1; : : : ;M; (1)

and the maximum is achieved, almost surely, for j

m

> �1, m = 1; : : : ;M . Also,

the above is the unique (up to sets of measure zero) solution of Lindley's recur-

sion for which W

m

n

is �nite almost surely. The solution in (1) has the following

interpretation. Let W

m;k

n

denote the waiting time of the n

th

customer in the m

th

queue, in a system which is assumed to start empty at the arrival time of the k

th

customer. Then, as k decreases to �1, W

m;k

n

increases monotonically to a limit,

which is the solution W

m

n

above. Since the sojourn time of a customer is the sum

of its waiting time and its own service time, it follows from (1) that

D

m

n

= max

j

m

�n

(�

m

j

m

;n

� �

m

j

m

+1;n

) (2)
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Since the inter-arrival and service times were assumed to be stationary, so are the

sojourn times given by the above expression. In addition, they are almost surely

�nite.

The inter-arrival time in the m

th

queue is the inter-departure time from the

(m� 1)

th

queue, for m � 2. But the departure epoch of a customer is the sum of

its arrival epoch and its sojourn time. Thus, for m � 2,

T

m

n

= T

m�1

n

+D

m�1

n

�D

m�1

n�1

and so

�

m

i;j

=

(

�

m�1

i;j

+D

m�1

j

�D

m�1

i�1

; if i � j + 1

0; else

(3)

Substituting in (2), we get

D

m

n

= max

j

m

�n

(�

m

j

m

;n

� �

m�1

j

m

+1;n

�D

m�1

n

+D

m�1

j

m

)

Hence

D

m

n

+D

m�1

n

= max

j

m

�n

(�

m

j

m

;n

� �

m�1

j

m

+1;n

+D

m�1

j

m

)

But, by (2), D

m�1

j

m

= max

j

m�1

�j

m

(�

m�1

j

m�1

;j

m

� �

m�1

j

m�1

+1;j

m

). Therefore,

D

m

n

+D

m�1

n

= max

j

m�1

�j

m

�n

(�

m

j

m

;n

� �

m�1

j

m

+1;n

+ �

m�1

j

m�1

;j

m

� �

m�1

j

m�1

+1;j

m

)

= max

j

m�1

�j

m

�n

(�

m

j

m

;n

+ �

m�1

j

m�1

;j

m

� �

m�1

j

m�1

+1;n

) (4)

Inductively, we obtain

M

X

m=1

D

m

0

= max

j

1

�:::�j

M+1

=0

 

M

X

m=1

�

m

j

m

;j

m+1

� �

1

j

1

+1;0

!

(5)

3 The Tail of the Sojourn Time Distribution

The signi�cance of the above result is that it provides a non-recursive relationship

between the total sojourn time in a tandem, the external arrival process and the

service processes at the individual nodes. We use it to estimate the probability

of large total delay in the tandem. We are interested in particular in obtaining

bounds on this probability that decay exponentially in the delay. That is, we are

interested in estimates of the form P (

P

M

m=1

D

m

0

� x) � exp(��x). The approach

to obtaining these estimates is as follows. We derive from (5) necessary and

su�cient conditions on the arrival and service processes for the event f

P

M

m=1

D

m

0

�

xg. We use Cherno�'s inequality to get an upper bound on the probability of the

necessary conditions being met. We use the G�artner-Ellis theorem from large

deviations theory (see [4]) to obtain a lower bound on the probability that the

su�cient conditions are satis�ed.
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While (5) holds for quite general arrival and service distributions, some addi-

tional assumptions are required in order to obtain exponential bounds. In particu-

lar, we require that the service times distributions have exponential tails. We shall

also need restrictions on the correlations between successive inter-arrival times or

service times, and between the arrival process and the service processes at the

various queues. We consider two distinct settings. In one, the service processes

at di�erent queues are mutually independent, although succesive service times

at any one queue may be correlated. In the other, the service times of di�erent

customers are i.i.d., though the service times required by any one customer at

di�erent queues may be correlated. In both cases, we assume that the arrival pro-

cess is independent of the service requirements. We shall see that the evolution of

large total delay can be very di�erent in these two settings. Starting with some

de�nitions, we introduce below the assumptions that are used in the rest of the

paper.

De�ne the e�ective domain of an extended real-valued function � as D

�

=

fx : �(x) < +1g, and let D

0

�

denote its interior. A convex function � : IR

d

!

(�1;+1] is called essentially smooth if

1. D

0

�

is non-empty.

2. �(�) is di�erentiable throughout D

0

�

.

3. �(�) is steep, namely, lim

n!1

jr�(�

n

)j =1 whenever f�

n

g is a sequence in

D

0

�

converging to a boundary point of D

0

�

.

The convex conjugate, �

�

(�), of � : IR! [�1;+1] is de�ned as

�

�

(x) = sup

�2IR

[�x��(�)]

Assumptions

1. (a) The arrival process into the �rst queue and the service processes at the

individual queues are mutually independent, stationary and ergodic, or

(b) The arrival process is stationary and ergodic. Each arrival is handed a

vector of service times required at the individual nodes. These vectors

are identically distributed (with arbitrary joint distribution), independ-

ent from customer to customer, and independent of the arrival times.

2. The stability condition holds, i.e., ET

1

> ES

m

, m = 1; : : : ;M . In other

words, the mean inter-arrival time exceeds the mean service time at any of

the queues.

3. For each m = 1; : : : ;M , and for all real �, the limits

�

T

1
(�) = lim

n!1

1

n

logE[exp(��

1

1;n

)]
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and

�

S

m

(�) = lim

n!1

1

n

logE[exp(��

m

1;n

)]

exist as extended real numbers.

4. The functions �

T

1
(�) and �

S

m

(�), m = 1; : : : ;M are essentially smooth and

lower semicontinuous, and the origin is in the interior of their e�ective do-

mains.

The independence assumptions in 1 are not unreasonable for most models of

practical interest. The stability criterion in 2 is essential to ensure that delays

do not become in�nite almost surely. Assumptions 3 and 4 are required by the

G�artner-Ellis theorem which we use below. They are not very restrictive, and

are satis�ed by most commonly used tra�c models. For example, if the inter-

arrival and service times are i.i.d. with exponential tails, or alternatively, if they

are (random) co-ordinate functions of Markov chains satisfying strong uniformity

conditions on the transition kernel and the tails, then these assumptions are satis-

�ed. In particular, Poisson, phase-type (see, e.g., [9]) and deterministic processes

satisfy these conditions. So do Markov modulated versions of these processes,

where the modulating Markov chain has a �nite number of states. Finally, while

the above assumptions require that the inter-arrival times have an exponential

tail, this requirement can be relaxed along the lines of Assumption B in Bertsimas

et.al., [1].

We derive below some properties of the logarithmic moment-generating func-

tions, �(�), de�ned in assumptions 3 and 4 above. These are needed to prove our

main result regarding the tail of the delay distribution.

Lemma 1 Suppose assumptions 2-4 above hold. De�ne

�

m

= sup f� > 0 : �

T

1
(��) + �

S

m

(�) < 0g; m = 1; : : : ;M;

where the supremum of the empty set is �1. Then �

m

> 0 and

�

T

1

(��) + �

S

m

(�) < 0 if � 2 (0; �

m

) (6)

�

T

1
(��) + �

S

m

(�) > 0 if � =2 [0; �

m

] (7)

Proof : By the de�nition of �

T

1
and �

S

m

above, we have �

T

1
(0) = �

S

m

(0) = 0 for

all m = 1; : : : ;M . Hence, by assumption 3,

�

T

1

(��) + �

S

m

(�) = ���

0

T

1

(0) + ��

0

S

m

(0) + o(�)

= �(ES

m

�ET

1

) + o(�)

is less than zero for su�ciently small � > 0 by the stability assumption. Hence,

the set over which the supremum in the de�nition of �

m

is taken is non-empty.

Therefore, �

m

> 0, m = 1; : : : ;M . By Lemma 2.3.9 in [4], �

T

1
and �

S

m

are convex

and greater than �1 everywhere. Hence, so is �

T

1
(��) +�

S

m

(�). Together with

the de�nition of �

m

and the fact that �

T

1
(0) + �

S

m

(0) = 0, this implies the claim

of the lemma.
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Lemma 2 Let �

1

; : : : ; �

M

be as above. De�ne

�

0

= sup

n

� : E

h

exp

�

�(S

1

1

+ : : :+ S

M

1

)

�i

< +1

o

Clearly �

0

� 0. De�ne �

�

= min

m=0;:::;M

�

m

. If assumption 1(a) is satis�ed, then

�

�

= min

m=1;:::;M

�

m

, i.e., �

0

can be excluded in taking the minimum.

Proof : Suppose assumption 1(a) holds. We shall show that if � > �

0

� 0, then

� � �

m

for some 1 � m �M , thereby proving the lemma. Now, if � > �

0

, then

E

h

exp

�

�(S

1

1

+ : : :+ S

M

1

)

�i

=

M

Y

m=1

E [exp(�S

m

1

)] = +1

The �rst equality above holds because the service processes at the individual

queues are independent by assumption 1(a), while the second equality follows

from the de�nition of �

0

. Choose m 2 f1; : : : ;Mg such that E[exp(�S

m

1

)] = 1.

Then, by the non-negativity of the service times, we have for every n,

1

n

logE

h

exp

�

�(S

m

1

+ : : :+ S

m

n

)

�i

�

1

n

logE [exp(�S

m

1

)] =1

Letting n go to in�nity, we get �

S

m

(�) =1. Since �

T

1
> �1 everywhere,

�

S

m

(�) + �

T

1
(��) > 0

Therefore, � � �

m

by Lemma 1. Since � > �

0

was arbitrary, �

0

� �

m

for some

1 � m �M . This establishes the claim of the lemma.

Below, we present our main result regarding the probabilities of large sojourn

times in a tandem. The intuition underlying this result is as follows. Let x > 0 be

given. By (5), a necessary condition for the total delay in the tandem to exceed x

is that there exist j

1

� : : : � j

M+1

= 0 such that

M

X

m=1

(�

m

j

m

;j

m+1

� �

1

j

1

+1;0

) � x (8)

Therefore, the probability that the total delay exceeds x is bounded above by the

sum over j

1

� : : : � j

M+1

= 0 of the probabilities of the above events. This

argument is the basis of the upper bound on (9), although the actual proof below

uses a slightly simpler approach analogous to that in [3]. The lower bounds on (9)

and (10) are obtained as a combination of the following results:

lim sup

x!1

1

x

logP

 

M

X

m=1

D

m

0

� x

!

� ��

0

;

lim inf

x!1

1

x

logP

 

M

X

m=1

D

m

0

� x

!

� � min

m=1;:::;M

�

m

;
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where �

0

; : : : ; �

M

are as de�ned in the lemmas above. Bounding the total delay of a

customer from below by the total service time required by that customer, we obtain

the �rst claim above. The second claim comes from choosing j

1

� : : : � j

M+1

= 0

to maximize the probability of the event in (8), where this probability is estimated

using the G�artner-Ellis theorem. The details are given below.

Theorem 1 Suppose the inter-arrival and service processes satisfy assumptions

1-4 above. Let �

�

be de�ned as in the lemma above. Then,

lim sup

x!1

1

x

logP

 

M

X

m=1

D

m

0

� x

!

= ��

�

(9)

while

lim inf

x!1

1

x

logP

 

M

X

m=1

D

m

0

� x

!

� � min

m=1;:::;M

�

m

(10)

If �

�

= min

m=1;:::;M

�

m

, as is true in particular if assumption 1(a) is satis�ed, then

lim

x!1

1

x

logP

 

M

X

m=1

D

m

0

� x

!

= ��

�

(11)

Proof : Let � 2 (0; �

�

). Then, for all m 2 f1; : : : ;Mg, �

T

1
(��) + �

S

m

(�) < 0 by

(6) and the de�nition of �

�

. In particular, �

T

1

(��) and �

S

m

(�) are �nite. Let

� > 0 be given. Then, by assumption 2, there are �nite positive constants c

m

, c

m

,

k

1

and k

1

such that

c

m

e

n(�

S

m
(�)��)

� E[exp(��

m

1;n

)] � c

m

e

n(�

S

m
(�)+�)

8 n � 0 (12)

k

1

e

n(�

T

1

(�)��)

� E[exp(��

1

1;n

)] � k

1

e

n(�

T

1

(�)+�)

8 n � 0 (13)

The constants c

m

, c

m

, k

1

, k

1

depend on �, � but this is suppressed in the notation.

Suppose �rst that assumption 1(a) holds. Since the arrival and service pro-

cesses are assumed to be mutually independent and stationary, we have from (5)

that, for all � � 0,

E

"

exp(�

M

X

m=1

D

m

0

)

#

= E

"

max

a

1

;:::;a

M

�0

exp(���

1

1;a

1

+:::+a

M

) �

M

Y

m=1

exp(��

m

0;a

m

)

#

�

X

a

1

;:::;a

M

�0

E

h

exp(���

1

1;a

1

+:::+a

M

)

i

�

M

Y

m=1

E

h

exp(��

m

0;a

m

)

i

(14)

Thus, by (12) and (13), for all � 2 (0; �

�

),

E

"

exp(�

M

X

m=1

D

m

0

)

#
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�

X

a

1

;:::;a

M

�0

k

1

e

(a

1

+:::+a

M

)(�

T

1

(��)+�)

�

M

Y

m=1

c

m

e

(a

m

+1)(�

S

m
(�)+�)

= ĉ

M

Y

m=1

1

X

a

m

=0

exp

h

a

m

�

�

S

m

(�) + �

T

1
(��) + 2�

�i

(15)

where 0 < ĉ < +1. Since � 2 (0; �

�

), observe from Lemma 1 that we can choose

� > 0 such that

�

T

1
(��) + �

S

m

(�) + 2� < 0 for all m 2 f1; : : : ;Mg:

Therefore, by (15), E[exp(�

P

M

m=1

D

m

0

)] � c for some �nite constant c. Hence, by

Cherno�'s inequality,

P

 

M

X

m=1

D

m

0

� x

!

� e

��x

E

"

exp(�

M

X

m=1

D

m

0

)

#

� ce

��x

Since the above holds for all 0 < � < �

�

, we get

lim sup

x!1

1

x

logP

 

M

X

m=1

D

m

0

� x

!

� ��

�

(16)

Suppose next that assumption 1(b) holds. Let � � 0. Observe from (5) and

the stationarity of the arrival and service processes that

E

"

exp(�

M

X

m=1

D

m

0

)

#

= E

"

max

0=a

0

�:::�a

M

exp(���

1

1;a

M

) � exp

�

�

M

X

m=1

�

m

a

m�1

;a

m

�

#

�

X

0=a

0

�:::�a

M

E

h

exp(���

1

1;a

1

+:::+a

M

)

i

� E

"

exp

�

�

M

X

m=1

�

m

a

m�1

;a

m

�

#

(17)

In the last inequality above, we have used the fact that the service process is

independent of the arrival process by assumption 1(b). Now, by the non-negativity

of the service times and their independence from customer to customer, we have

E

"

exp

�

�

M

X

m=1

�

m

a

m�1

;a

m

�

#

�

M

Y

m=1

E

h

exp(��

m

a

m�1

+1;a

m

�1

)

i

�

M

Y

m=0

E

h

exp

�

�(S

1

a

m

+ : : :+ S

M

a

m

�i

= exp

"

M

X

m=1

(a

m

� a

m�1

� 1)�

m

(�)

#

M

Y

m=0

E

h

exp

�

�(S

1

a

m

+ : : :+ S

M

a

m

�i

(18)

If � 2 (0; �

�

), then it follows from the de�nition of �

�

that

E

h

exp

�

�(S

1

a

m

+ : : :+ S

M

a

m

�i

= c

9



for a �nite constant, c. Combining this fact with (13), (17) and (18), we get, for

� 2 (0; �

�

) and any � > 0,

E

"

exp(�

M

X

m=1

D

m

0

)

#

�

X

0=a

0

�:::�a

M

ĉ

M

Y

m=1

exp

h

(a

m

� a

m�1

)

�

�

T

1
(��) + �

S

m

(�) + �

�i

= ĉ

M

Y

m=1

1

X

b

m

=0

exp

h

b

m

�

�

T

1
(��) + �

S

m

(�) + �

�i

(19)

where ĉ is a �nite constant. Since � 2 (0; �

�

), observe from Lemma 1 that we can

choose � > 0 such that

�

T

1
(��) + �

S

m

(�) + � < 0 for all m 2 f1; : : : ;Mg:

Therefore, by (19), E[exp(�

P

M

m=1

D

m

0

)] � c, for some �nite constant c. Hence, by

Cherno�'s inequality,

P

 

M

X

m=1

D

m

0

� x

!

� e

��x

E

"

exp(�

M

X

m=1

D

m

0

)

#

� ce

��x

Since the above holds for all 0 < � < �

�

, we get

lim sup

x!1

1

x

logP

 

M

X

m=1

D

m

0

� x

!

� ��

�

(20)

We have, in (16) and (20), upper bounds on P

�

P

M

m=1

D

m

0

� x

�

under assump-

tions 1(a) and 1(b) respectively. We now turn to estimating lower bounds on the

probability of large queue sizes.

Suppose � > min

1�m�M

�

m

. Let m be such that � > �

m

. De�ne �(�) =

�

S

m

(�) + �

T

1
(��). Since �

S

m

(�) > �1 and �

T

1
(�) > �1 for all �, � is well-

de�ned. Now, by assumptions 1 and 3,

�(�) = lim

n!1

1

n

logE

h

exp(�(�

m

1;n

� �

1

1;n

))

i

Also, by assumption 3, � is essentially smooth and lower semicontinuous. Hence,

by the G�artner-Ellis theorem (Theorem 2.3.6 in [4]), the process f(�

m

1n

� �

1

1n

)=ng

satis�es a large deviations principle with rate function �

�

which is the convex

conjugate of �. In other words, for every closed set F and every open set G,

lim sup

n!1

1

n

logP

 

�

m

1n

� �

1

1n

n

2 F

!

� � inf

x2F

�

�

(x) (21)

lim inf

n!1

1

n

logP

 

�

m

1n

� �

1

1n

n

2 G

!

� � inf

x2G

�

�

(x) (22)

10



Fix � > 0. Given x > 0, de�ne n = x=�. Taking j

1

= : : : = j

m

= �n and

j

m+1

= : : : = j

M+1

= 0 in (5), and using the stationarity of fS

m

i

g and fT

1

i

g, we

get

P

 

M

X

m=1

D

m

0

> x

!

� P

�

�

m

1n

� �

1

1n

> n�

�

Hence, taking G = (�;1) in (22), we see that

lim inf

x!1

1

x

logP

 

M

X

m=1

D

m

0

> x

!

�

1

�

lim inf

n!1

1

n

logP

 

�

m

1n

� �

1

1n

n

> �

!

= �

1

�

inf

z>�

�

�

(z)

� �(1 + �)

�

�

((1 + �)�)

(1 + �)�

8 � > 0 (23)

Since the above inequality holds for all � > 0, we have

lim inf

x!1

1

x

logP

 

M

X

m=1

D

m

0

> x

!

� � inf

�>0

�

�

(�)

�

(24)

By assumption 3, namely, that � is essentially smooth and lower semicontinu-

ous, �(�) and �

�

(�) are convex duals (see, for example, [8]). Therefore,

�(�) = sup

�2IR

[��� �

�

(�)]

Since � > �

m

by the choice of � and m, we see from (7) that �(�) > 0. Hence,

there exists �

�

2 IR such that ��

�

� �

�

(�

�

) > 0. Note that �

�

is non-negative

because �(0) = 0. Also, � > 0 because �

m

> 0 as noted earlier. It follows that

�

�

> 0. Consequently,

inf

�>0

�

�

(�)

�

�

�

�

(�

�

)

�

�

< �

Since � > min

1�m�M

�

m

is arbitrary, we conclude from (24) that

lim inf

x!1

1

x

logP

 

M

X

m=1

D

m

0

> x

!

� � min

1�m�M

�

m

(25)

Next, by taking j

1

= : : : = j

M+1

= 0 in (5), we see that

M

X

m=1

D

m

0

�

M

X

m=1

S

m

0

Therefore, if � > �

0

� 0, we have

E

"

exp(�

M

X

m=1

D

m

0

)

#

� E

"

exp(�

M

X

m=1

S

m

0

)

#

= +1

11



where the equality holds by de�nition of �

0

. It is an immediate consequence of

the above that, for all � > 0,

lim sup

x!1

e

(�+�)x

P

 

M

X

m=1

D

m

0

> x

!

= +1;

as can be shown by contradiction. Therefore,

lim sup

x!1

1

x

logP

 

M

X

m=1

D

m

0

> x

!

� �� � �

Since � > �

0

and � > 0 are arbitrary, we conclude that

lim sup

x!1

1

x

logP

 

M

X

m=1

D

m

0

> x

!

� ��

0

(26)

The inequality in (25) holds a fortiori if lim inf is replaced by lim sup. Together

with (26), this implies that

lim sup

x!1

1

x

logP

 

M

X

m=1

D

m

0

> x

!

� ��

�

(27)

Combining (16) and (20), which hold under assumption 1(a) and 1(b) respectively,

with (27), we obtain the �rst claim of the theorem. The second claim is given by

(25). The last claim of the theorem follows from the �rst two, and the de�nition

of �

0

; : : : ; �

M

and �

�

.

We now consider the qualitative behaviour of the system that results in large

total delay for a customer. As is apparent from the proof above, there are two

distinct scenarios.

Suppose �

�

= min

1�m�M

�

M

, as is the case if assumption 1(a) holds, i.e., the

service times at the di�erent queues are mutually independent. Then we can

identify a set of one or more bottleneck queues which are responsible for large

delays in the following sense. The most likely cause of a given customer su�ering

a large delay is that a large number of its immediate predecessors require, at one

of the bottleneck queues, service times in excess of their inter-arrival times. The

number of such predecessors, and their mean inter-arrival and service times, may

be found by maximizing P (�

m

1;n

� �

1

1;n

� x) over n, �

m

1;n

and �

1

1;n

. Using large

deviations theory to approximate the above probability, we get the equivalent

problem:

min

n;y;z

n

�

�

�

S

m

(

y

n

) + �

�

T

1

(

z

n

)

�

subject to y � z � x

Here m indexes one of the bottleneck queues, which are those queues for which

�

m

= �

�

. We note that in this case the tail of the total delay distribution decays

12



at the same exponential rate as the tail of the delay distributions at any of the

bottleneck queues. In other words, solving for the delays at the individual queues

and considering the worst case is adequate to describe the total delay in the

tandem.

Suppose next that �

�

= �

0

. In that case, the most likely reason that a given

customer su�ers a large delay is that its own total service requirement is large.

More precisely, there are arbitrarily large values of x for which the probability

that the delay of a given customer exceeds x is roughly the probability that its

own total service requirement exceeds x. In this case, the tail of the delay distri-

bution at any single queue does not capture the tail behaviour of the total sojourn

time distribution. The di�erence between the two cases is demonstrated by the

following example.

Example : Consider two queues in series, fed by Poisson external arrivals of

rate �. Let the service time requirements be i.i.d. for di�erent customers, and

independent of the arrival process. Suppose the service time required at each

queue is exponentially distributed with mean 1=�. Then,

�

T

1
(�) = log

�

�� �

� 1f� < �g +1 � 1f� � �g;

�

S

i(�) = log

�

�� �

� 1f� < �g+1 � 1f� � �g; i = 1; 2:

Solving �

S

i
(�) + �

T

1

(��) = 0, we get 0 and � � � as the solutions. Therefore,

�

1

= �

2

= �� �.

We now consider two cases, one in which the service times of a customer at the

two queues are independent of each other, and another in which they are equal.

In the former, we have �

0

= �, and so, by Theorem 1,

lim

x!1

1

x

logP

�

D

1

0

+D

2

0

� x

�

= �� �: (28)

In the latter, we see from the de�nition of the service times that �

0

= �=2, and

that

lim

x!1

1

x

log P

�

S

1

0

+ S

2

0

� x

�

= lim

x!1

1

x

logP

�

S

1

0

�

x

2

�

=

�

2

: (29)

Since S

1

0

+ S

2

0

is a lower bound on D

1

0

+ D

2

0

, it follows from (29) and the upper

bound in (9) that

lim

x!1

1

x

logP

�

D

1

0

+D

2

0

� x

�

=

�

2

if � >

�

2

Therefore, if � > �=2, the tail of the total sojourn time distribution is determined

by the total service requirement of a single customer.

13



4 Conclusion

The problem of estimating packet loss probabilities in queueing networks has re-

cently received considerable attention, motivated in large part by applications to

broadband communication networks. A related problem, that of estimating the

probability of large end-to-end packet delays, has been relatively neglected. In this

paper, we obtain a description of this probability for a tandem queueing model,

under mild conditions on the arrival and service processes. We also derive a simple

expression for the total delay in (5), which could be useful in studying arrival and

service process models other than the one we have considered here. From the view-

point of applications, it would be of interest to study models with multiple classes

of customers and priority service schemes at the individual queues. Extending the

results of this paper to such a model remains an open problem.
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