
Parallel Temporal Nested-Loop Joins

Technical Report

ECS-CSG-20-96

Thomas Zurek

Department of Computer Science

Edinburgh University

King's Buildings

Edinburgh EH9 3JZ

United Kingdom

Email: tz@dcs.ed.ac.uk

January 1996

Abstract

In this report we present a framework for parallel temporal joins. We focus on

temporal intersection as the most general temporal join condition. A basic algorithm

is given that consists of a partition and a joining stage. In the partition stage tuples

have to be replicated if they intersect with more than one partition range. This

causes a signi�cant overhead { around 70% in the case of our modest workload.

The joining stage can employ any sequential join technique. The basic algorithm is

enhanced through two possible optimisations that reduce the overhead imposed by

replication.

The algorithm and its optimisations are evaluated on top of a performance model.

We describe the model and give details in the appendix. The evaluation shows

that both optimisations together decrease the basic costs signi�cantly. Furthermore

we can give an idea of the quantitative impact of replication overhead in parallel

temporal join processing. Our (modest) workload caused a share of around 70% of

the total costs; higher values can be expected in reality.

1

Contents

1 Introduction 3

2 Temporal Joins 4

2.1 Types of Temporal Joins : 4

2.2 Algorithms for Temporal Joins : 5

3 Parallel Temporal Joins 7

3.1 The Basic Structure : 7

3.2 Preliminaries : 8

3.3 The Algorithm : 8

3.4 Optimisations : 11

4 Performance Model 14

4.1 The Basic Issues : 14

4.2 Partitioning Stage : 14

4.3 Joining Stage of Join A : 17

4.4 Joining Stage of Join B : 19

4.5 Joining Stage of Join C : 20

5 Evaluation 24

5.1 Workload and Architectural Parameters : 24

5.2 Analysis : 25

6 Conclusions 29

2

1 Introduction

Recent years have seen increasing research e�orts on temporal databases. Temporal data mod-

els, temporal query languages and temporal index structures have been the focus of a lot of

papers. Only a few proposals have come up discussing algorithms for temporal operations al-

though it is often cited that temporal-speci�c algorithms are required for performance reasons.

The temporal join is one of the key temporal operators. Intuitively, it is required whenever

we want to retrieve data that is valid at the same time. Performance of temporal join processing

su�ers from

� the higher size of temporal relations due to the fact that tuples are logically deleted rather

than physically removed,

� the high selectivity factor [Piatetsky-Shapiro and Connell, 1984] of temporal join condi-

tions.

Various authors argue that the semantics of time can be used for optimisations. A popular

example is the `append-only' characteristic of transaction time applications: when new tuples

are inserted they are appended to the collection of existing ones. This results in a natural sort

order on the transaction time attribute. The sort order itself can then be exploited in several

ways.

Parallelism is another possibility of improving temporal processing performance. It has

already been successfully incorporated in traditional database technology and helped to over-

come certain performance de�cits. However, it has been widely neglected in the context of

temporal databases. To our knowledge, there has been only one paper that discusses parallel

temporal issues [Leung and Muntz, 1992]. Its optimisations, however, are bound to special cases

of temporal joins and there is no quantitative evaluation and no considerations on architectural

issues.

In this report we want to overcome some of these de�cits and present a framework for

parallel temporal join processing. Section 2 discusses types of temporal joins and sequential

algorithms that were proposed in the past. In section 3, a basic parallel temporal join algorithm

is given. This algorithm is improved through two optimisations. Section 5 evaluates these results

quantitatively. We modeled the performance of the three algorithms on top of a general-purpose

hardware architecture. This makes the results useful for a wide range of parallel environments.

Details of the performance model are given in the appendix. Finally, the report is concluded in

section 6.

3

2 Temporal Joins

2.1 Types of Temporal Joins

Temporal joins combine (at least) two temporal relations using a temporal join condition over

the two timestamps. The latter are usually represented as intervals. Temporal join conditions

therefore consist of expressions that de�ne the relationships between timestamps, i.e. the time

intervals. [Allen, 1983] identi�ed seven possible relationships

1

between two intervals. These are

shown in table 1.

We adopt the following notational conventions: an interval x consists of a start point,

denoted by x:t

s

, and an end point, denoted by x:t

e

. When speaking of a timestamped tuple r

we also refer to the respective interval boundaries by r:t

s

and r:t

e

. Intervals are represented by

its start and end point being enclosed in brackets: [or] means that the respective boundary is

included whereas (and) mean that the respective boundary is excluded:

[x:t

s

; x:t

e

] = ft : x:t

s

� t � x:t

e

g

(x:t

s

; x:t

e

) = ft : x:t

s

< t < x:t

e

g

[x:t

s

; x:t

e

) = ft : x:t

s

� t < x:t

e

g

Relationship Example Condition

x equals y xxxx x:t

s

= y:t

s

^ x:t

e

= y:t

e

yyyy

x before y xxxx yyyy x:t

e

< y:t

e

x meets y xxxxyyyy x:t

e

= y:t

s

x overlaps y xxxx x:t

s

< y:t

s

^ x:t

e

> y:t

s

^ x:t

e

< y:t

e

yyyy

x during y xxx x:t

s

> y:t

s

^ x:t

e

< y:t

e

yyyyyyy

x starts y xxx x:t

s

= y:t

s

^ x:t

e

< y:t

e

yyyyyy

x �nishes y xxx x:t

s

> y:t

s

^ x:t

e

= y:t

e

yyyyyy

Addtional constraints are: x:t

s

� x:t

e

^ y:t

s

� y:t

e

Table 1: The possible relationships between two intervals [Allen, 1983]

Temporal joins can be classi�ed according to the relationship that its join condition is

based on: there are temporal contain-, meet-, overlap-, : : : joins. Obviously a temporal join

condition may contain any arbitrary combination of these relationships. We can consider the

corresponding join to be of any type that is involved. In reality it is more likely that there is

only one.

The literature has mainly concentrated on a `supertype' of the joins that arise from table 1,

namely the temporal intersection that includes the relationships equals, overlaps, during, starts

1

Actually there are 13 if one takes the six possible reversed relationships into account.

4

and �nishes. We will concentrate on intersection joins as all the other temporal joins can be

considered as intersection joins with additional constraints. Furthermore we can draw a clear

line between the optimisations that are possible for the temporal intersection join and those

that are speci�c to the other temporal joins.

Usually the tuples that satisfy the join condition are concatenated. In the case of temporal

joins this concatenation is not trivial as the value of the timestamp for the resulting tuple has

to be de�ned. This de�nition depends on the type of the temporal join; assuming temporal in-

tersection the resulting timestamp is de�ned to be the intersection of the individual timestamps

of the participating tuples. For example in the case of the two tuples r and s the resulting

timestamp is

[maxfr:t

s

; s:t

s

g;minfr:t

e

; s:t

e

g] (1)

2.2 Algorithms for Temporal Joins

The four principal algorithmic join techniques are nested-loop, sort-merge, hash-joins and index

based joins. Most join conditions involve an equality predicate. Such joins are called equi-joins

and a lot of e�ort has been spent on algorithms that exploit the low selectivity imposed by the

equality predicate.

Basic nested-loops for equi-joins usually perform badly due to the lack of any preceding

partitioning of the data. The sort-merge approach is based on implicit partitioning given by a

sort order on a join attribute. This allows to reduce the number of unnecessary comparisons.

The hash join approach requires explicit partitioning prior to its joining stage whereas index

based joins use precomputed partitioning [Mishra and Eich, 1992].

In the literature, several algorithms based on these approaches have also been discussed in

the context of temporal joining. Sort orderings on the temporal attributes { these are either

achieved through explicit sorting or implied by the `append-only' characteristic of transaction-

time relations { allow various optimisations. Discussions can be found in [Gunadhi and Segev,

1990], [Leung and Muntz, 1990], [Gunadhi and Segev, 1991], [Rana and Fotouhi, 1993].

In the case of equi-joins, explicit partitioning is the basis for very e�cient joining. Apply-

ing those techniques to temporal intersection of interval data, however, has the problem that

intervals cannot be reduced to a discrete value that allows the grouping of the tuples whose

timestamps intersect in one single partition. One way to get around this problem is to group

tuples by either one of their temporal interval boundaries (start or end point) or a combination

of these (e.g. in [Lu et al., 1994]). Tuples must then be either replicated and put into those par-

tition fragments that hold other tuples that possibly join, i.e. have intersecting timestamps (as

in [Leung and Muntz, 1992] and [Soo et al., 1994]) or each partition fragment has to be joined

with various others that hold possibly joining tuples (as in [Lu et al., 1994]). The algorithm

proposed in [Soo et al., 1994] processes fragments in a sequential order and keeps tuples that

have to be present in the following fragment in a cache.

Replication cannot be avoided in the case of parallel temporal join processing. Such an

approach is discussed in [Leung and Muntz, 1992]. The so called asymmetry property of relations

{ that appears e.g. in contain- or overlap-joins { can be used for reducing the number of tuples

that have to be replicated. Asymmetry, however, does not occur in the more general intersection

join. Therefore, optimisations that are suggested by Leung and Muntz and that originate in the

asymmetry property cannot be applied in the case of the intersection join. Basic nested-loops for

equi-joins usually perform badly due to the lack of any preceding partitioning. The sort-merge

approach is based on implicit partitioning given by a sort order on a join attribute. This allows

5

to reduce the number of unnecessary comparisons. The hash join approach requires explicit

partitioning prior to its joining stage whereas index based joins use precomputed partitioning

[Mishra and Eich, 1992].

6

3 Parallel Temporal Joins

In this section we �rst describe the general structure of parallel temporal joins. We focus on

temporal intersection join. None the less what we state can also be applied to the more speci�c

cases like contain- or overlap-joins that allow more speci�c optimisations due to their increased

selectivity. E.g. the optimisations proposed in [Leung and Muntz, 1992] can be considered as

an enhancement of the techniques we propose.

After an introduction of the basic architectural and notational issues in sections 3.1 and 3.2

a basic parallel intersection join is presented in section 3.3. Finally, two essential optimisations

of the basic algorithm are discussed in section 3.4.

3.1 The Basic Structure

We assume a hybrid parallel architecture as it was described in [Hua et al., 1991]. This architec-

ture has two levels: the inner or node-level is based on a shared-memory approach, whereas the

outer level adopts shared-nothing. Put in another way: it is a shared-nothing combination of

SMP nodes. This type of architecture has proved to be the most general one and a recent survey

of commercial parallel database systems [Norman and Thanisch, 1995] showed that most paral-

lel database systems were optimised for running on this type of hardware. Figure 1 illustrates

the architecture

2

.

. . .

P P P...

Bus

M

Interconnect

P P P...

Bus

M

Figure 1: Hybrid parallel architecture

The general stages of a parallel (temporal) join of two (temporal) relations R and S are the

following:

1. Partition R into fragments R

1

; : : : ; R

m

;

partition S into fragments S

1

; : : : ; S

m

.

2. Perform local temporal joins

R

1

1 S

1

; : : : ; R

m

1 S

m

2

For redundancy reasons the disks are usually not only connected to one SMP node but to several. For the

purpose of this report we do without this feature.

7

3. Merge the local results to form a global result.

The general join symbol 1 was used here because there is no di�erence with respect to

traditional parallel joins. In the remainder of this report, the temporal aspect is relevant and

we will use the symbol 1

T

. Section 3.3 discusses stages 1 and 2 in more detail because it is

there where the di�erences between a parallel temporal join and a traditional parallel join arise.

It is assumed that the partitions of R and S have to be created dynamically. It is unlikely

that R and S will be partitioned over the timestamp attribute using the same partition points.

It is even more unlikely that those partitions are colocated

3

.

3.2 Preliminaries

Let T be the time span covered by the tuples of R and S. For the purpose of this report we

assume T to be an interval over a discrete domain, e.g. an interval of integers [t

min

; : : : ; t

max

].

A temporal m-way partition P of T is a set of m+ 1 partition points

fp

0

; p

1

; : : : ; p

m�1

; p

m

g

with p

0

= t

min

; p

m

= t

max

+ 1 and p

i

2 T for i = 0; : : : ; m � 1. P divides T into m partition

intervals

[p

i�1

; p

i

) = ft 2 T j p

i�1

� t < p

i

g

for i = 1; : : : ; m. The following function determines the number of the fragment, time range

respectively, that a time point t 2 T belongs to with respect to partition P

fragment

P

(t) � k i� t 2 [p

k�1

; p

k

)

The parallel hardware has N nodes each with n processors. The nodes are numbered from 1

to N and the processors from 1 to nN such that all processors of node i have numbers from

n (i�1)+1 to n (i�1)+n = ni. A function node(k) gives the number of the node that processor

k belongs to

node(k) � (k div N) + 1

For the moment we assume that the number m of fragments matches the number of processors

nN . For convenience we additionally use an N -way partition Q of T . Q is a subset of P and

holds every n-th partition point of P , i.e. the partition points that coincide with the points used

as node boundaries. This is helpful when describing the algorithm in the next section

Q = fq

0

; q

1

; : : : ; q

N�1

; q

N

g

with q

i

= p

ni

. Similarly there is a function fragment

Q

for Q.

3.3 The Algorithm

The algorithm adopts the structure presented in section 3.1. We concentrate on stages 1 and

2 only; stage 3 either leaves the result partitioned for further processing or saves the tuples on

disk.

At the start, relations R and S are assumed to be physically partitioned into N fragments

that are distributed over the disks of the N nodes.

3

In the sense of colocated joins as discussed in [Baru et al., 1995].

8

Stage 1

Range-partitioning for R, i.e. creation of the fragments R

1

; : : : ; R

nN

(remember that m = nN)

in stage 1 is done in the following way; S is partitioned in a similar way:

(a) Each node reads its fragment of R; then each processor processes the n-th part of this

fragment.

(b) Each processor has nN hash bu�ers { one for each processor of the machine. It hashes its

tuples to the bu�ers in the following way: a tuple with timestamp [t

s

; t

e

] is put into

(i) hash bu�er k = fragment

P

(t

s

)

(ii) hash bu�ers with numbers (k � 1)n+ 1 where

fragment

Q

(t

s

) < k � fragment

Q

(t

e

)

Remark: Step (i) puts the tuple in the fragment that covers the range in which the

timestamp's start point t

s

falls; step (ii) puts the tuples in the �rst fragments on nodes

(other than that covered by step (i)) that hold ranges with which [t

s

; t

e

] intersects.

When a hash bu�er is full it is transmitted to the output bu�er of the corresponding

processor.

(c) A further replication step is performed when tuples (each with some time interval [t

s

; t

e

])

arrive, say at processor k:

if (k < fragment

P

(t

e

)) then

for l = k + 1 to min(n�node(k); fragment

P

(t

e

))

send tuple to the output bu�er of processor l

Remark: Alternatively, an index structure can be built (for each processor) that refers to

those tuples in shared-memory that fall into the respective fragment. In the case of large

tuples this is certainly faster than replicating the tuples in main memory. In most cases,

in particular for the workload of our experiments (see section 5), the choice of strategy

has only little impact on the overall performance. Therefore we only describe the simple

copying strategy.

(d) When an output bu�er is full then its tuples are ushed to disk.

The signi�cant di�erence, in comparison to partitioning for a traditional parallel join, is the

replication of tuples in steps (b).(ii) and (c). We chose a two-level replication: (b).(ii) replicates

the tuples over the interconnect and positions the tuples on all nodes that hold ranges that

intersect with the tuples' timestamps; this step can be seen as an inter-node replication. Step

(c) replicates the tuples within the nodes and sends them to all processors that cope with a range

that intersects with the tuples' timestamps. This intra-node replication is faster because it can

be done via shared-memory rather than via communication over the interconnection network.

If this step was incorporated into step (b).(ii) the advantage of fast communication via main

memory would be lost.

9

Stage 2

We now focus on stage 2 of the algorithm. Actually, any sequential temporal join algorithm

can be used for performing the local joins R

1

1

T

S

1

; : : : ; R

nN

1

T

S

nN

. We adopt a nested-loop

approach for the following reason:

The performance drawback of nested-loop in the case of a traditional equi-join is mainly

due to the fact that the algorithm compares the two portions of tuples completely in order to

compute the join result. Sort-merge equi-joins can decrease this overlap of the two relations

nearly to a minimum as they take advantage of the relations being sorted on a join attribute.

Hash-based equi-joins only do the necessary comparisons due to disjoint partitioning [Mishra

and Eich, 1992].

In the case of a temporal intersection join, however, the degrees of overlap of sort-merge

and hash joins have to be variable and are { as we argue { very close to a complete overlap: R

and S are already range-partitioned in our case; so the degree of necessary overlap between the

portions R

k

and S

k

is likely to be high. Therefore the advantages of sort-merge and hash are

reduced. Furthermore they would require R

k

and S

k

to be sorted

4

or hashed beforehand which

imposes an overhead and further reduces their advantages.

Stage 2 of the basic algorithm then works in the following way: each processor k copes

with `its' fragments R

k

and S

k

of R and S respectively. Without loss of generality we assume

jR

k

j � jS

k

j in the following. This only implies that { for e�ciency reasons { R

k

will be the

outer and S

k

the inner relation in the nested-loop computation of R

k

1

T

S

k

.

We assume that the join condition is a temporal intersection and some boolean expression

C(r; s). The latter is supposed to be non-temporal and therefore amenable to the same op-

timisations that may be applied to non-temporal join evaluation. For performance modelling

purposes we later assume that C(r; s) evaluates to true so that we can neglect any implica-

tions given by this part of the join condition and concentrate on the essential temporal aspects.

Stage 2 then looks like this:

for each tuple r in R

k

do

f for each tuple s in S

k

do

f if ([r:t

s

; r:t

e

] intersects [s:t

s

; s:t

e

]) and no previous join(r; s; k) and C(r; s) then

f time-concatenate r and s

place result in output bu�er X

k

if (X

k

is full) then ush to disk

g

g

g

To avoid the situation in which the global result contains duplicates that are a consequence of

tuple replication, tuples r and s are only joined if at least one of them appears in no preceding

fragment R

l

or S

l

with l < k, i.e. if at least one of their timestamps has its start point in the

current range. This is determined by the boolean function no previous join(r; s; k) that can be

de�ned as

no previous join(r; s; k) � (fragment

P

(r:t

s

) = k) or (fragment

P

(s:t

s

) = k)

4

In a message-passing environment it is di�cult to preserve a sort order on R

k

; S

k

in the case that relations

R;S are already sorted. At least it would slow the communication down and would impose an overhead in this

way even though the sorting of R

k

and S

k

was avoided.

10

Here is a short formal proof for this intuitively derived restriction:

no previous join(r; s; k)

, (fragment

P

(r:t

s

) = k) or (fragment

P

(s:t

s

) = k)

, r:t

s

2 [p

k�1

; p

k

) or s:t

s

2 [p

k�1

; p

k

)

) 8j < k : r:t

s

62 [p

j�1

; p

j

) or s:t

s

62 [p

j�1

; p

j

)

) 8j < k : r 62 R

j

or s 62 S

j

) 8j < k : r � s 62 R

j

1

T

S

j

When two tuples satisfy the join condition they are concatenated. As we mentioned in section 2

the tuple that results from joining two tuples r and s holds the timestamp de�ned by (1). This

process is called the time-concatenation of r and s, denoted above as r � s.

3.4 Optimisations

In this section we want to point to two possible optimisations of the algorithm presented in the

previous section.

Optimisation 1

The function no previous join(r; s; k) was used to avoid replicated tuples being joined unne-

cessarily and causing duplicates in the result. Nevertheless these tuples are processed by the

algorithm. We can avoid this by splitting up the fragments R

k

and S

k

into two components

respectively:

� the set of tuples that have their timestamp start points in the range [p

k�1

; p

k

) { these are

called the primary tuples and are put into the sets R

0

k

and S

0

k

, respectively,

� the set of tuples that fall into the fragment because of replication (i.e. their timestamp

start point is not in the range [p

k�1

; p

k

)) { these are denoted as the replicated tuples and

are put into R

00

k

and S

00

k

.

Formally, we can describe the bene�t of this procedure as follows: stage 2 in section 3.3 does

all the processing for computing the local join

R

k

1

T

S

k

(2)

but is prevented from putting some tuples to the results through the no previous join(r; s; k)

condition. With

R

k

= R

0

k

[R

00

k

S

k

= S

0

k

[S

00

k

(2) evaluates to

R

0

k

1

T

S

0

k

[R

0

k

1

T

S

00

k

[R

00

k

1

T

S

0

k

[R

00

k

1

T

S

00

k

(3)

which represents four individual joins. The latter one (R

00

k

1

T

S

00

k

) de�nes exactly the set of

tuples that is excluded from the result by the no previous join(r; s; k) condition. It is actually

unnecessary and can be skipped. Computation can be reduced to the �rst three joins. Section 5

will show the bene�t of this measure.

11

As a prerequisite for this optimisation we have to keep primary and replicated tuples sep-

arated during the partitioning stage 1: each processor had one hash bu�er per processor that

kept primary and replicated tuples. Now we use two: a primary hash bu�er and a replication

hash bu�er. Similarly, each processor had one output bu�er for collecting tuples of its fragment

before they were ushed to disk. Now there are primary and replication output bu�ers. Steps

(b) and (c) of stage 1 are modi�ed like this:

(b) Each processor hashes its tuples to the bu�ers in the following way: a tuple with timestamp

[t

s

; t

e

] is put into

(i) the primary hash bu�er

k = fragment

P

(t

s

)

(ii) the replication hash bu�ers with numbers (k � 1)n+ 1 where

fragment

Q

(t

s

) < k � fragment

Q

(t

e

)

When a primary hash bu�er is full it is transmitted to the primary output bu�er of the

corresponding processor.

When a replication hash bu�er is full it is transmitted to the replication output bu�er of

the corresponding processor.

(c) A further replication step is performed when tuples (each with some time interval [t

s

; t

e

])

arrive at the replication output of processor (say k):

if (k < fragment

P

(t

e

)) then

for l = k + 1 to min(n�node(k); fragment

P

(t

e

))

send tuple to the replication output bu�er of processor l

Optimisation 2

A second optimisation is based on two observations:

� The three remaining joins of (3) can be computed in the following orders (amongst others):

R

0

k

1

T

S

00

k

; R

0

k

1

T

S

0

k

; R

00

k

1

T

S

0

k

(4)

or

R

00

k

1

T

S

0

k

; R

0

k

1

T

S

0

k

; R

0

k

1

T

S

00

k

(5)

� Until now we assumed that the number m of fragments matches the number nN of pro-

cessors. Alternatively, we can choose m in a way such that R

0

k

and/or S

0

k

are small enough

to �t into main memory of the node. This is possible because the sizes of R

0

k

and S

0

k

can

be nearly arbitrarily cut down by increasing m; remember that they only hold tuples that

have their timestamp start point in the range [p

k�1

; p

k

). Thus each tuple of R (S respect-

ively) belongs only to one R

0

k

(S

0

k

respectively) because the ranges are disjoint. Thus R

(S) is partitioned into more and smaller fragments

5

by increasing m.

5

This statement falls apart only in extreme cases of data skew. For the purpose of the report, however, we

assume a uniform distribution of the data.

12

Assuming that the joins are computed in the order as in (4) or (5) and keeping R

0

k

and S

0

k

in main memory we can avoid unnecessary accesses to secondary storage: R

0

k

is loaded once

into main memory for computing the �rst join in (4) and is then kept for computing the second

join, and �nally the third join is computed with S

0

k

in main memory. The procedure works for

(5) accordingly.

Optimal join ordering and avoiding I/O accesses by optimally using main memory is no

special feature of temporal join processing. However, there are two signi�cant issues about this

second optimisation:

� The original join (2) is decomposed into three subjoins, one of them being R

0

k

1

T

S

0

k

.

R

0

k

and S

0

k

have predictable sizes as each tuple of R and S appears in only one of these

fragments respectively. In contrast, the sizes of R

00

k

and S

00

k

, and therefore also of R

k

and S

k

, are rather di�cult to predict because the rate of tuple replication is di�cult to

estimate. Furthermore, the negative e�ects of data skew are higher than for R

0

k

and S

0

k

:

it is not only the data skew on the timestamp start point values, but also skew on the

timestamp interval lengths, that inuence the sizes of R

00

k

and S

00

k

.

� The optimisation is based on the patterns (4) and (5) that occur regularly, namely in each

of the local joins of the parallel temporal join execution. It is therefore an integral part

of the algorithm and not a feature that an optimiser might exploit whenever a qualifying

situation is detected.

In section 5 the quantitative bene�t will be shown.

13

4 Performance Model

In this section the performance of the parallel temporal joining techniques described in section 3

is modeled:

� the basic algorithm described in 3.3 (join A),

� the basic algorithm plus optimisation 1 (join B),

� the basic algorithm plus optimisations 1 and 2 (join C).

Section 4.1 describes the basic issues of the model; the following sections described the model

for each of the stages:

� the partitionining stage / stage 1 in section 4.2,

� the joining stage / stage 2 of join A in section 4.3,

� the joining stage / stage 2 of join B in section 4.4,

� and the joining stage / stage 2 of join C in section 4.5.

4.1 The Basic Issues

The performance of the algorithms was modeled in a similar way as the parallel hash join in

[Hua et al., 1991]. The major issues are:

� The total response time C

total

of the algorithms depends on the times C

part

; C

join

spent in

stages 1 and 2. In reality there might be an overlap between these two stages; thus

maxfC

part

; C

join

g � C

total

� C

part

+ C

join

In our model, however, we assume that there is no overlap (e.g. enforced through a barrier

type synchronisation). Thus we use the upper bound

C

total

= C

part

+ C

join

The stages (a), (b) etc. within stages 1 and 2 are treated accordingly.

� Within each stage the overlap between the I/O, communication, CPU and memory ac-

cess phases is perfect. This can be nearly achieved by separate I/O and communication

processors. Put the other way: in tables 2 { 5 the maximum of each row is taken.

4.2 Partitioning Stage

The partitioning for join C di�ers from that for A and B { but only from the algorithmic point

of view. The performance model can be the same as the amount data being moved by each

processor and node is the same. It is only that there are more but smaller data fragments.

The stage { as described on page 8 { comprises disk accesses, communication, CPU time

and memory accesses as the major cost factors. We now derive the these costs for each of the

substages:

14

(a) Loading fragments of R from disk

This substage does not involve any communication or memory accesses. Only disk accesses

and the CPU costs for initiating these accesses have to be modeled.

We assume a uniform distribution of R over the nodes, i.e. equally sized parts of R are

stored on the disks of the nodes. Therefore each node has to move

jRj

N

tuples each of size r to the processors. The disk I/O bandwidth is w

D

which leads to

jRj

N

�

r

w

D

(6)

as the disk access costs whereby a portion of

jRj

n �N

is loaded by each processor. We assume that tuples are moved blockwise

6

from disk to

the processors. Thus a disk I/O has to be initiated only once per block. If b is the size of

such a block then

jRj

n �N

�

r

b

is the number of blocks to be moved. The time spent on initiating one block movement is

I

sio

�

where I

sio

is the number of microprocessor instructions necessary; � is the number of

instructions per second being performed by the processor. Thus

jRj

n �N

�

r

b

�

I

sio

�

(7)

is the CPU time spent in substage 1 (a).

As mentioned in the previous section, we assume that disk I/O, communication, CPU

and memory access phases have a perfect overlap. Therefore it is the maximum of the

individual times that is �nally relevant. The total time spent on substage 1 (a) is therefore

the maximum of (6) and (7):

C

1a

= max

�

jRj

N

�

r

w

D

;

jRj

n �N

�

r

b

�

I

sio

�

�

(8)

(b) Redistribution of the data via the network, including inter-node replication

Substage 1 (b) describes the distribution of the data between the nodes. It initiates an

inter-node replication (via the communication network). Thus it comprises communication

and CPU costs.

6

or { in other terms { pagewise.

15

We assume that each of the N nodes has to send a portion of

N � 1

N

of its data via the communication network to other nodes. The data comprises not only the

primary but also the replicated tuples. We use the parameter �

R

to denote the average rate

by which one tuple of R is replicated on base of an underlying partition P . Communication

via the interconnect is only necessary for inter-node replication, i.e. replication across node

boundaries. A node boundary appears every n-th fragment in P (each fragment of Q,

respectively). Thus each tuple is replicated over node boundaries at an average rate of

�

R

n

Hence each node sends

N � 1

N

�

jRj

N

�

�

R

n

� r

bytes. As each of the N node sends this amount the total communication costs are

N � 1

N

� jRj �

�

R

n

�

r

w

C

(9)

To initiate the communication each processor has to spend

I

scomm

�

seconds per block. Similarly, the CPU costs for computing the expressions fragment

P

(t

s

),

fragment

Q

(t

s

) and fragment

Q

(t

e

) in stage 1 (b) are

N � 1

N

�

jRj

n �N

�

�

R

n

�

3 � I

exp

�

The total CPU costs are therefore

N � 1

N

�

jRj

n �N

�

�

R

n

�

�

r

b

�

I

scomm

�

+

3 � I

exp

�

�

(10)

The total time spent on stage 1 (b) is the maximum of (9) and (10):

C

1b

= max

�

N � 1

N

� jRj �

�

R

n

�

r

w

C

;

N � 1

N

�

jRj

n �N

�

�

R

n

�

�

r

b

�

I

scomm

�

+

3 � I

exp

�

��

(11)

(c) Intra-node replication via main memory

Stage 1 (c) replicates tuples between processors on the same node. Communication can

therefore be done via main memory. Originally, there are

jRj

N

tuples per node. Each tuple is replicated �

R

times on average. If �

R

exceeds n (the

number of processors per node) then most tuples are replicated over all processors of a

node; otherwise just �

R

times. Writing one tuple to memory creates costs of

r

w

M

16

if w

M

is the memory bandwidth in bytes per second. Thus the memory access costs for

this stage are

C

1c

=

jRj

N

�

r

w

M

�maxf�

R

; ng (12)

CPU costs for these memory accesses can be neglected as the comprise by far less instruc-

tions as computing expressions (I

exp

) or processing two tuples (I

proc

). Thus (12) states the

total costs for stage 1 (c).

(d) Writing new fragments of R to disk

Stage 1 (d) writes the new fragments to disk. The latter contain on average �

R

times more

tuples due to replication. The performance equations can be derived similarly to those of

stage 1 (a): (6) and (7) only have to be multiplied by �

R

. Thus

C

1d

= max

�

jRj

N

� �

R

�

r

w

D

;

jRj

n �N

� �

R

�

r

b

�

I

sio

�

�

(13)

The performance model of stage 1 is summarised in table 2. Relation S has to be partitioned

in the same way using the respective parameters jSj and �

S

. It is assumed that the tuple size

r is the same for R and S. This is a simpli�cation which keeps the equations simple, especially

for the performance modelling of the join stages.

With equations (8), (11), (12) and (13) we can derive the total costs of stage 1:

C

1

= C

1a

+ C

1b

+ C

1c

+ C

1d

(14)

The total partition costs C

part

comprise costs C

1

for relation R plus C

1

for relation S.

Stage Disk I/O Communication CPU Memory

1 (a)

jRj

N

�

r

w

D

jRj

n�N

�

r

b

�

I

sio

�

1 (b)

N�1

N

� jRj �

�

R

n

�

r

w

C

N�1

N

�

jRj

n�N

�

�

R

n

�

�

r

b

�

I

scomm

�

+

3�I

exp

�

�

1 (c)

jRj

N

�

r

w

M

�maxf�

R

; ng

1 (d)

jRj

N

� �

R

�

r

w

D

jRj

n�N

� �

R

�

r

b

�

I

sio

�

Table 2: Performance model for the partitioning stage (stage 1, section 3.3)

4.3 Joining Stage of Join A

In this section we derive the costs C

join

for algorithm A. In the joining stage of this basic

algorithm each processor k computes the partial join R

k

1

T

S

k

. The average number of tuples

in these fragments are

jRj

n �N

� �

R

and

jSj

n �N

� �

S

17

For e�ciency reasons, the relation with the lower cardinality is chosen to be the outer relation.

This can be easily seen by looking at the number of disk accesses for processing the join which

is:

(1 + jinner relationj) � jouter relationj

This reects the fact that each tuple of the outer relation has to be read once whereas each

tuple of the inner relation has to be read jouter relationj times. For the two existing alternatives

this number is lower when

jinner relationj � jouter relationj

As stated in section 3.3 we assume jR

k

j � jS

k

j, i.e. R

k

to be the outer and S

k

to be the inner

relation. Thus the disk accesses that are caused by each processor are

�

1 +

jSj

n �N

� �

S

�

�

jRj

n �N

� �

R

This is done by each processor of a node. Thus the total tuple accesses to the common disk

system is

n �

�

1 +

jSj

n �N

� �

S

�

�

jRj

n �N

� �

R

The quotient

r

w

D

gives the time that is required per tuple access. Therefore the total disk I/O costs are

n �

�

1 +

jSj

n �N

� �

S

�

�

jRj

n �N

� �

R

�

r

w

D

(15)

As already discussed in section 4.2 these accesses cause CPU costs of

�

1 +

jSj

n �N

� �

S

�

�

jRj

n �N

� �

R

�

r

b

�

I

scomm

�

(16)

per processor when a blockwise transfer is assumed. For computing the join result each tuple

in R

k

is compared with each tuple of S

k

. If processing of such a pair of tuples requires I

proc

instructions then further CPU costs are

jRj

n �N

� �

R

�

jSj

n �N

� �

S

�

I

proc

�

(17)

(16) plus (17) give the total CPU costs of stage 2. As we assume a perfect overlap between disk

I/O and CPU activities, only the maximum of the two cost expressions is relevant. Therefore

the total costs of stage 2 are

C

A

2

= max

�

n �

�

1 +

jSj

n �N

� �

S

�

�

jRj

n �N

� �

R

�

r

w

D

;

�

1 +

jSj

n �N

� �

S

�

�

jRj

n �N

� �

R

�

r

b

�

I

scomm

�

+

jRj

n �N

� �

R

�

jSj

n �N

� �

S

�

I

proc

�

�

(18)

The cost expressions are also shown in table 3.

18

Stage Disk I/O CPU

2 n �

�

1 +

jSj

n�N

�

S

�

�

jRj

n�N

�

R

�

r

w

D

�

1 +

jSj

n�N

�

S

�

�

jRj

n�N

�

R

�

r

b

�

I

sio

�

+

jRj

n�N

�

R

�

jSj

n�N

�

S

�

I

proc

�

Table 3: Performance model for the joining stage of join A (stage 2)

4.4 Joining Stage of Join B

In this section we derive the costs C

join

for algorithm B. Join B computes the three partial joins

(a) R

0

k

1

T

S

0

k

(b) R

0

k

1

T

S

00

k

(c) R

00

k

1

T

S

0

k

whereby

R

k

= R

0

k

[R

00

k

S

k

= S

0

k

[S

00

k

The partial costs of these joins will be referred to by C

B

2a

; C

B

2b

; C

B

2c

respectively.

The parameters �

R

and �

S

give the average number of fragment ranges that a tuple timestamp

intersects with. Thus tuples are replicated �

R

� 1 and �

S

� 1 times. These are the ratios

jR

00

k

j = jR

0

k

j and jS

00

k

j = jS

0

k

j respectively. R

0

k

and S

0

k

theirselves only hold primary tuples which

are { as we assume { uniformly distributed. Hence their sizes are

jR

0

k

j =

jRj

n �N

jS

0

k

j =

jSj

n �N

which implies the following sizes of R

00

k

and S

00

k

:

jR

00

k

j =

jRj

n �N

� (�

R

� 1)

jS

00

k

j =

jSj

n �N

� (�

S

� 1)

For deciding on which are the inner and which the outer relations we make the following as-

sumptions:

jR

0

k

j � jS

0

k

j

jR

0

k

j � jS

00

k

j

jS

0

k

j � jR

00

k

j

The �rst assumption is arbitrary whereas the second and the third reasonable because we can

expect the number of replication tuples to be signi�cantly higher than that of the primary

19

tuples. The left sides of these relationships give therefore the respective outer and the right

sides the respective inner relations.

The performance costs of the three joins can now be derived similarly to the one in sec-

tion 4.3. This leads to the equations shown in table 4. Because of the overlap between disk I/O

and CPU processing only the maximum of each row is relevant, i.e.

C

B

2a

= maxfC

B

2a�io

; C

B

2a�cpu

g

C

B

2b

= maxfC

B

2b�io

; C

B

2b�cpu

g

C

B

2c

= maxfC

B

2c�io

; C

B

2c�cpu

g

The joining costs C

join

for join B are then

C

B

2

= C

B

2a

+ C

B

2b

+ C

B

2c

Stage Disk I/O CPU

2 (a) n �

�

1 +

jSj

n�N

�

�

jRj

n�N

�

r

w

D

�

1 +

jSj

n�N

�

�

jRj

n�N

�

r

b

�

I

sio

�

+

jRj

n�N

�

jSj

n�N

�

I

proc

�

2 (b) n �

�

1 +

jSj

n�N

(�

S

� 1)

�

�

jRj

n�N

�

r

w

D

�

1 +

jSj

n�N

(�

S

� 1)

�

�

jRj

n�N

�

r

b

�

I

sio

�

+

jRj

n�N

�

jSj

n�N

(�

S

� 1) �

I

proc

�

2 (c) n �

�

1 +

jRj

n�N

(�

R

� 1)

�

�

jSj

n�N

�

r

w

D

�

1 +

jRj

n�N

(�

R

� 1)

�

�

jSj

n�N

�

r

b

�

I

sio

�

+

jRj

n�N

(�

R

� 1) �

jSj

n�N

�

I

proc

�

Table 4: Performance model for the joining stage of join B (stage 2)

4.5 Joining Stage of Join C

In this section we derive the costs C

join

for algorithm C. This algorithm di�ers from join B in

the issues incorporated through optimisation 2 (see section 3.4):

� The sequence in which the joins are computed. Join C rearranges them to the following

sequence:

(a) R

0

k

1

T

S

00

k

(b) R

0

k

1

T

S

0

k

(c) R

00

k

1

T

S

0

k

The advantage is that R

0

k

needs to be loaded only once from disk for computation in steps

(a) and (b).

� The fact that the sizes of the R

0

k

and S

0

k

are chosen to �t into main memory such that

then do not have to be reloaded various times during computation.

20

These two issues essentially reduce the disk I/O costs at the expense of additional memory

costs. As R

0

K

and S

0

k

reside in main meory we choose these as the respective inner relation in

joins (a) and (c). In join (b) we will use R

0

k

as the inner relation as it is already kept in main

memory from computation for join (a).

In order to �t the R

0

k

and S

0

k

into main memory the number m of fragments has to be chosen

accordingly. If m � n �N then all joins R

k

1

T

S

k

can be computed in parallel. If m > n �N then

the joins R

1

1

T

S

1

; : : : ; R

nN

1

T

S

nN

are computed in parallel �rst and then, in one or more

subsequent rounds, the remaining ones. The number � of such rounds that are to be performed

is therefore

� =

�

m

n �N

�

In section s:model:stage2B we have already determined the sizes jR

0

k

j; jR

00

k

j; jS

0

k

j and jS

00

k

j. There,

m = n �N . In join C we have to return to using m, thus

jR

0

k

j =

jRj

m

jS

0

k

j =

jSj

m

jR

00

k

j =

jRj

m

� (�

R

� 1)

jS

00

k

j =

jSj

m

� (�

S

� 1)

Now we look at the partial joins:

(a) R

0

k

1

T

S

00

k

We can load each tuple of S

00

k

once and join it with R

0

k

which resides in main memory.

Thus, each tuple of R

0

k

and S

00

k

has to be loaded only once. This causes a data transfer of

�

jSj

m

(�

S

� 1) +

jRj

m

�

�

r

w

D

per processor. The total disk accesses per node are n times as high. As � rounds have to

be performed the total disk I/O costs C

C

2a�io

per node are

� � n �

�

jSj

m

(�

S

� 1) +

jRj

m

�

�

r

w

D

(19)

The corresponding CPU costs for initiating this data transfer are

� �

�

jSj

m

(�

S

� 1) +

jRj

m

�

�

r

b

�

I

sio

�

(20)

per processor. The CPU costs for join processing are { similarly as in join B {

jRj

m

�

jSj

m

(�

S

� 1) �

I

proc

�

Again, as there are � rounds, this has to be multiplied by �:

� �

jRj

m

�

jSj

m

(�

S

� 1) �

I

proc

�

(21)

21

The total CPU costs C

C

2a�cpu

for this partial join are (20) plus (21).

As mentioned at the beginning, the tuples of R

0

k

reside in main memory and are joined

with each tuple in S

00

k

. This means jR

0

k

j � jS

00

k

j tuple accesses to main memory. The time

costs per access are

r

w

M

As memory is shared on node level, between n processors, the total of n memory accesses

of the joins that are processed on a node have to be considered. Thus the costs are

n �

jRj

m

�

jSj

m

(�

S

� 1) �

r

w

M

For the � rounds the total memory costs C

C

2a�mem

are

� � n �

jRj

m

�

jSj

m

(�

S

� 1) �

r

w

M

(22)

The total costs for the entire partial join is the maximum of (19), (20) plus (21) and (22):

C

C

2a

= max

n

C

C

2a�io

; C

C

2a�cpu

; C

C

2a�mem

o

(23)

(b) R

0

k

1

T

S

0

k

As R

0

k

already resides in main memory from the previous join only the tuples of S

0

k

have

to be loaded from disk. This causes I/O costs C

C

2b�io

of

� � n �

jSj

m

�

r

w

D

(24)

per node and CPU costs of

� �

jSj

m

�

r

b

�

I

sio

�

(25)

per processor. Join processing requires further

� �

jRj

m

�

jSj

m

�

I

proc

�

(26)

of CPU costs per processor. Finally accesses to tuples of R

0

k

in main memory { similar to

the preceeding partial join { cause costs C

C

2b�mem

of

� � n �

jRj

m

�

jSj

m

�

r

w

M

(27)

The total costs for the entire partial join is the maximum of (24), (25) plus (26) and (27):

C

C

2b

= max

n

C

C

2b�io

; C

C

2b�cpu

; C

C

2b�mem

o

(28)

(c) R

00

k

1

T

S

0

k

Cost calculations for this join resemble very much that of join (a) with S

0

k

residing in main

memory and the tuples of R

00

k

subsequently being loaded from disk. Table 5 gives the cost

equations for this join and summarises the previously discussed ones.

The joining costs C

join

for join C are the sum of the costs for the partial joins (a), (b) and (c)

as described above.

22

Stage Disk I/O CPU Memory

2 (a) � � n �

�

jSj

m

(�

S

� 1) +

jRj

m

�

�

r

w

D

� �

�

jSj

m

(�

S

� 1) +

jRj

m

�

�

r

b

�

I

sio

�

� � n �

jRj

m

�

jSj

m

(�

S

� 1) �

r

w

M

+ � �

jRj

m

�

jSj

m

(�

S

� 1) �

I

proc

�

2 (b) � � n �

jSj

m

�

r

w

D

� �

jSj

m

�

r

b

�

I

sio

�

� � n �

jRj

m

�

jSj

m

�

r

w

M

+ � �

jRj

m

�

jSj

m

�

I

proc

�

2 (c) � � n �

�

jRj

m

(�

R

� 1) +

jSj

m

�

�

r

w

D

� �

�

jRj

m

(�

R

� 1) +

jSj

m

�

�

r

b

�

I

sio

�

� � n �

jRj

m

(�

R

� 1) �

jSj

m

�

r

w

M

+ � �

jRj

m

(�

R

� 1) �

jSj

m

�

I

proc

�

Table 5: Performance model for the joining stage of join C (stage 2)

23

5 Evaluation

In this section we give a quantitative analysis of the parallel temporal joining techniques de-

scribed in section 3 on top of the performance model that has been presented in the previous

section. For this purpose we use an typical workload on an architecture with certain perform-

ance parameters. Both, workload and architectural parameters, are presented in section 5.1.

In section 5.2 the analysis of the joins is presented using performance model, workload and

architecture.

5.1 Workload and Architectural Parameters

Table 6 summarises the workload that we used for the experiments. It is quite modest with

respect to number of tuples, tuplesize and lengths of timestamps. This has to be taken into

account later as we will see that even such a modest workload can cause tremendous processing

costs due to the high selectivity of a temporal intersection join.

Parameter Description Value in the Experiments

jRj; jSj number of tuples in relations R;S 100000 tuples

r size of a tuple in bytes 500 bytes

jT j length of the joint relation spans T = T

R

[T

S

5000 time units

�

R

; �

S

average lengths of the tuple timestamps in

R;S

100 time units

�

R

; �

S

the average number of fragment-ranges that a

tuple timestamp spans

derived from �

R

; �

S

; jT j;m

Table 6: The workload parameters

We assume a uniform distribution of the data over time, i.e. tuple lifespans do not vary

much from their average values �

R

; �

S

and the timestamp start points are uniformly distributed

over the relation lifespans T

R

; T

S

. This assumption is certainly ideal and in reality temporal

data skew has to be considered. It allows, however, the avoidance of any (possibly unreal or

application speci�c) assumptions about the nature of temporal data skew. Furthermore, the

model can be kept simple.

The timespan T , covered by tuples from R and S, is divided into m equally sized ranges,

i.e. two partition points p

i

and p

i+1

are on equal distances for 0 � i < m. If jT j is the length of

T then

jT j

m

is the length of a fragment range. If � is the average length of a tuple timestamp interval then

this timestamp occupies a share of

�

jT j

m

(29)

of a fragment's range. As interval start points are distributed uniformly over the fragment range

there will be some tuples whose timestamps start near the end of the range. This means that

those tuples overlap the range borders (i.e. the partition points p

i

). To get the average number

24

� of fragment ranges that a tuple timestamp spans we have to add 1 to (29). Therefore �

R

; �

S

are given by

�

R

=

�

R

jT j

�m+ 1

�

S

=

�

S

jT j

�m+ 1

Remember that m = n �N for joins A and B.

In table 7 the parameters of the parallel architecture are described. A rate of 100 MIPS is

pretty standard at the moment, e.g. it is more or less the rate of a Pentium processor. With

respect to the memory size it should be emphasized that, naturally, each node has more memory

than 8 MB (e.g. for the operating system kernel) but it is only these 8 MB that are available

for join processing purposes.

Parameter Description Value in the Experiments

N number of nodes varied

n number of processors per node 4

� processor speed in MIPS 100 MIPS

w

D

disk I/O bandwidth per node 20 MB/sec

w

C

communication bandwidth 100 MB/sec

w

M

memory bandwidth per node 400 MB/sec

I

proc

number of CPU instructions for processing a

tuple in each step

1000

I

exp

number of CPU instructions for computing

arithmetic expressions fragment

P

(t)

I

proc

10

= 100

I

scomm

number of CPU instructions for initiating a

data transfer

500

I

sio

number of CPU instructions for initiating a

disk I/O

500

mem amount of shared memory per node avalaible

for data structures

8 MB

b page size 4 kB

Table 7: The parameters describing the parallel architecture

5.2 Analysis

The performance model was used to run several experiments. First of all, we compared the

performance of the three joins with respect to the workload of table 6 and varying the number

N of nodes. Figure 2 shows the result. As it can be expected join C performs better than join B

which itself is better than join A. Interesting facts, however, are the quantitative e�ects of the

optimisations that were discussed in section 3.4:

� Optimisation 1 (join A ! join B) improves performance between 20% (N = 10) and 65%

(N = 50).

25

� Optimisation 2 (join B ! join C) decreases costs furthermore by 90%.

� Optimisations 1 and 2 (join A ! join C) give a composite improvement of around 95%.

All join costs are dominated by the costs for stage 2; partitioning costs and therefore commu-

nication costs can be neglected. The costs of joins A and B mainly comprise I/O costs whereas

join C's costs consist of CPU and memory access costs. Increasing N implies a higher I/O

bandwidth, more memory and more CPU power. This explains the ideal scaleup in �gure 2.

Figure 3 shows the split of costs for join C. Graphs for the other two joins look the same;

only the respective cost values on the vertical axis are higher but the ratio between the partial

cost components is the same. The replication join costs are the costs for performing the joins

that are due to tuple replication, i.e. the joins involving R

00

k

and S

00

k

in (4) and (5). The primary

join costs are the costs for performing the join R

0

k

1

T

S

0

k

.

The overhead costs imposed by tuple replication have a share of 65% to 75% of the total

costs. This suggests that any optimisations that reduce tuple replication should translate nicely

into a total cost reduction.

Up to now, the workload of table 6 did not require m to exceed nN in order to reduce the

size of the R

0

k

; S

0

k

such that they �t in main memory (see optimisation 2). In other words: it is

� = 1 in �gures 2 and 3.

In �gure 4 the costs of join C are shown for the tuple size r being varied. The graphs break

o� at around 1050 and 1678 bytes. The �rst breakpoint is caused by the fact that memory

costs overtake CPU costs. The second one is due to the choice of m being a multiple of nN

for simplicity Passing the `1678-bytes-point' � changes from 1 to 2 (see section 4.5). The crease

suggests that this choice is not optimal but not bad either. The share of the replication overhead

remains in the 65% to 75% margin throughout the experiment

7

.

7

This margin, of course, certainly depends on the workload, in particular on the lengths of tuple timestamps.

We consider the average timestamp / relation lifespan ratio �=jT j of 2% in our example as low. Higher ratios

can perfectly be expected. These would increase the 70% margin.

26

0

200

400

600

800

1000

1200

1400

1600

1800

sec

10 20 30 40 50
N

Join A

Join B

Join C

Comparison of the Joins

Figure 2: Performances of the three join algorithms

0

20

40

60

80

100

120

140

160

sec

10 20 30 40 50
N

Total Costs

Replication Join Costs

Primary Join Costs

Join C Performance

Figure 3: The components of the join C costs

27

20

40

60

80

100

120

sec

200 400 600 800 1000 1200 1400 1600 1800 2000
tuple size r in bytes

Total Costs

Replication Join Costs

Primary Join Costs

Join C Dependency on the Tuple Size (N=20)

Figure 4: The costs of join C depending on the tuple size r

28

6 Conclusions

In this report we discussed the parallel processing of temporal joins. We focused mainly on

temporal intersection as other types of temporal joins can be considered as special cases to

temporal intersection.

Parallelising temporal joins is not trivial. The signi�cant di�erence with respect to tradi-

tional equi-joins is based on the fact that timestamps are usually represented as intervals. The

intersection conditions consists of non-equality predicates. Data partitioning over time inter-

vals is therefore not straightforward: tuples have to be replicated and to be put into several

fragments of a range-partition of the temporal relations. This causes considerable overhead.

We showed that this overhead can be reduced signi�cantly if one divides a partition fragment

into primary and replicated tuples. This allows to avoid that replicated tuples of one relation

are joined with replicated tuples of another relation as this is not necessary (optimisation 1).

Furthermore this division enables us to choose a certain number m of fragments such that

subfragments that contain the primary tuples �t into main memory. This allows to reduce I/O

accesses signi�cantly (optimisation 2).

Finally we gave a performance model for three parallel joins. This was based on a general-

purpose parallel hardware architecture. This makes results generally useful. The joins were

evaluated on top of this model using a certain workload. Both optimisations reduced costs by

around 95%. A further conclusion was that the overhead caused by tuple replication made up

around 70% of the total costs.

29

References

Allen, J. (1983). Maintaining Knowledge about Temporal Intervals. Communications of the

ACM, 26(11):832{843.

Baru, C., Fecteau, G., Goyal, A., Hsiao, H., Jhingran, A., Padmanabhan, S., Copeland, G., and

Wilson, W. (1995). DB2 Parallel Edition. IBM Systems Journal, 34(2):292{322.

Gunadhi, H. and Segev, A. (1990). A Framework for Query Optimization in Temporal Data-

bases. In Michalewicz, Z., editor, Proc. of the 5th International Conf. on Statistical and

Scienti�c Database Management, Charlotte, NC, USA, number 420 in Lecture Notes in

Computer Science (LNCS), pages 131{147. Springer.

Gunadhi, H. and Segev, A. (1991). Query Processing Algorithms for Temporal Intersection

Joins. In Proc. of the 7th International Conference on Data Engineering, Kobe, Japan,

pages 336{344.

Hua, K., Lee, C., and Peir, J.-K. (1991). Interconnecting Shared-Everything Systems for Ef-

�cient Parallel Query Processing. In Proceedings of the 1st International Conference on

Parallel Distributed Information Systems, Miami Beach, FL, USA, pages 262{270.

Leung, T. and Muntz, R. (1990). Query Processing for Temporal Databases. In Proc. of the 6th

International Conference on Data Engineering, Los Angeles, CA, USA, pages 200{208.

Leung, T. and Muntz, R. (1992). Temporal Query Processing and Optimization in Multipro-

cessor Database Machines. In Proc. of the 18th International Conference on Very Large

Data Bases, Vancouver, Canada, pages 383{394.

Lu, H., Ooi, B.-C., and Tan, K.-L. (1994). On Spatially Partitioned Temporal Join. In Proc.

of the 20th Internat. Conf. on Very Large Data Bases (VLDB), Santiago de Chile, pages

546{557.

Mishra, P. and Eich, M. (1992). Join Processing in Relational Databases. ACM Computing

Surveys, pages 63{113.

Norman, M. and Thanisch, P. (1995). Parallel Database Technology: An Evaluation and Com-

parison of Scalable Systems. The Bloor Research Group, UK. ISBN 1-874160-17-1.

Piatetsky-Shapiro, G. and Connell, C. (1984). Accurate Estimation of the Number of Tuples

Satisfying a Condition. In Proceedings ACM SIGMOD 1984 Conference on Management

of Data, pages 256{276.

Rana, S. and Fotouhi, F. (1993). E�cient Processing of Time-Joins in Temporal Data Bases.

In Proc. of the 3rd Internat. Symposium on Database Systems for Advanced Applications,

pages 427{432.

Soo, M., Snodgrass, R., and Jensen, C. (1994). E�cient Evaluation of the Valid-Time Natural

Join. In Proc. of the 10th International Conference on Data Engineering, Houston, Texas,

USA, pages 282{292.

30

