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Abstract

Large deviations techniques have proved to be very useful in char-

acterizing the tail of queue length distributions, for queues with very

general arrival and service processes. Extending these ideas to net-

works of queues requires the characterization of the large deviations

behaviour at the output of a queue in terms of the behaviour of the

input and service processes. We show in this paper that the output

process does not, in general, possess a desirable property that is usu-

ally assumed for the input process. This property is the convexity of

its large deviations rate function, or equivalently, the linear geodesic

property of its sample paths. The lack of this property implies that a

simple, inductive approach to characterizing the tail of queue length

distributions in networks is not feasible in general.

Keywords : Queueing networks, large deviations, multiclass queues.

1 Preliminaries

Consider a discrete time queue with d arrival streams X = (X

1

; : : : ;X

d

)

sharing an in�nite bu�er according to an FCFS policy with stochastic service
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rate C. X

k

denotes the number of arrivals of each type in time slot k, while

C

k

denotes the maximumnumber of customers of any type that can be served

in this time slot. We suppose that the queue is initially empty. De�ne

A

n

=

n

X

k=1

X

k

; B

n

=

n

X

k=1

C

k

(1)

Let A

n

=

P

d

j=1

A

j

n

denote the total number of arrivals, and D

n

the total num-

ber of departures up to time n. Assuming that the queue is work-conserving,

we have

D

n

= inf

0�k�n

(A

k

�B

k

) +B

n

(2)

It remains to specify the amount of work, D

n

= (D

1

; : : : ;D

n

), serviced from

each input stream by time n. To do this, we set,

T

n

= supfk � n : A

k

� D

n

g (3)

D

n

= A

T

n

+ (D

n

�A

T

n

)X

T

n

+1

=X

T

n

+1

(4)

This corresponds to the assumption that simultaneous arrivals from di�erent

sources are thoroughly mixed in the queue.

The large deviations behaviour of the input and service processes has been

used by a number of authors to derive asymptotics on the tail of the queue

length, see, for example. In order to extend such an approach to networks

of queues, it is desirable to obtain an expression for the large deviations

behaviour of the departure process in terms of those of the arrival and service

processes. This has been done by N. O'Connell [4]. We begin by reviewing

this result.

De�ne S

n

(t) = (A

[nt]

=n;B

[nt]

=n), R

n

(t) = D

[nt]

=n. For each positive in-

teger k, letL

k

denote the subspace of paths in L

1

([0; 1]

k

) with non-decreasing

components, C

k

� L

k

the set of continuous paths starting at zero, and

A

k

� C

k

the set of those paths with absolutely continuous components.

The following assumptions are made in [4].

(A1) For all  2 IR, sup

k

E[exp (X

k

+ C

k

)] <1.

(A2) For each � 2 IR

d+1

, the limit

�(�) = lim

n!1

1

n

logE[exp(� � S

n

(1))] (5)
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exists as an extended real number and is �nite in a neighborhood of the

origin. The sequence S

n

satis�es the large deviation principle (LDP)

in L

d+1

with good rate function I given by

I(�) =

(

R

1

0

�

�

(

_

�)ds; if � 2 A

d+1

1; otherwise

(6)

where �

�

is the convex conjugate of �.

(A3) The arrival and service processes are asymptotically independent in the

sense that

�

�

(x; c) = �

�

a

(x) + �

�

b

(c) (7)

Under the above assumptions, it was shown in [4] that the sequence R

n

satis�es the LDP in L

d

with good rate function

I

d

( ) = inffI(�) : �(�) =  g (8)

where � : C

d+1

! C

d

is de�ned by

A(�) = (�

1

; : : : ; �

d

) (9)

D(�)(t) = inf

0���1

h

A(�)(�t)� �

d+1

(�t)

i

+ �

d+1

(t) (10)

T (�)(t) = inffr : A(�)(r) = D(�)(t)g (11)

�(�) = A(�) � T (�) (12)

It is immediate from the contraction principle that D

n

=n satis�es the LDP

in IR

d

with good rate function

�

�

d

(z) = inffI

d

( ) :  (0) = 0;  (1) = zg; (13)

for I

d

as in (8). From this, it was derived in [4] that

�

�

d

(z) = inff��

�

a

(x=�) + ��

�

a

�

z� x

�

�

+ ��

�

b

(c) + (1� �)�

�

b

 

z � x

1� �

!

:

�; � 2 [0; 1]; c 2 IR; � + � � 1; x � �cg: (14)

The last result has the interpretation that the most likely path of the

arrival and service processes which results in the departure process having

mean rate z on the interval [0; n] is as follows. The arrival process has rate
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x=� on the interval [0; �n] and rate (z� x)=� on [�n; (�+�)n]. The service

rate during [0; �n] is c, which is greater than the aggregate arrival rate during

this period. So the queue is empty during [0; �n]. The queue is non-empty

throughout [�n; n], during which period the service rate, at (z � x)=(1� �),

is no larger than the total arrival rate, which is (z � x)=�. The rigorous

statement underlying this intuition, proved in [4], is the following:

�

�

d

(z) = I

d

( ); (15)

where  (t), 0 � t � 1 is speci�ed by,

 (0) = 0;

_

 (t) =

(

x

�

; 0 < t < �,

z�x

1��

; � < t < 1.

(16)

Here �, x are those achieving the in�mum in (14), and I

d

is as de�ned in (8).

The result in (14) applies to a queue started empty. A similar but more

involved expression was derived for a queue in equilibrium, which we shall

deal with later. Under the above assumptions, we can derive an expres-

sion for the asymptotics of the queue length distribution. The problem of

extending this derivation to an arbitrary queue in a feed-forward queueing

network remains open. The arrival process into any queue in such a net-

work is an aggregate of the departure processes from its predecessors (or

splittings thereof) and possibly of an external arrival process. Therefore, the

result above suggests that we approach this problem using the LDP for the

departure process. This would work if the departure process also satis�ed

assumptions (A1)-(A3). We show below that there are situations where the

departure process fails to satisfy (A2). Note that, due to the convexity of

�

�

, (A2) corresponds to the assumption of linear geodesics. We shall give

two counterexamples to show that departures from an empty queue need not

have linear geodesics.
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2 Counterexamples

2.1 Single customer class

Consider a queue with a stochastic server and a single class of customers (so

d = 1). Then, (14) simpli�es to

�

�

d

(z) = inff��

�

a

(x=�) + ��

�

a

�

z � x

�

�

+ ��

�

b

(c) + (1� �)�

�

b

 

z � x

1 � �

!

:

�; � 2 [0; 1]; c 2 IR; � + � � 1; x � �cg: (17)

where now x and z are scalars.

Let EX = �

0

a

(0) denote the mean number of arrivals, and EC = �

0

b

(0)

the mean number of services in each time slot. The following properties of �

�

a

,

�

�

b

are well-known, see [3] for instance. �

�

a

(respectively, �

�

b

) is non-negative,

and zero only at EX (respectively EC). Both �

�

a

and �

�

b

are convex, and

�nite on a non-empty interval, in the interior of which they are analytic. We

assume that the queue is stable, namely EX < EC. Suppose that for some

� 2 [0; EX],

�

�

a

(�) = �

�

b

(�) (18)

and also that these functions are �nite in a neighborhood of �. Without loss

of generality, we can take � to be the largest number in [0; EX] for which

(18) holds. Then, since �

�

a

(EX) = 0 < �

�

b

(EX), we have �

�

a

(x) < �

�

b

(x) for

all x 2 (�;EX], and consequently that (�

�

a

)

0

(�) < (�

�

b

)

0

(�). It follows from

this that

9 � > 0 : �

�

b

(x) < �

�

a

(x) < +1 8 x 2 [�� �; �]; (19)

and also that

9 0 < x

1

< � < x

2

< EX :

x

1

+ x

2

2

= �;

�

�

b

(x

1

) + �

�

a

(x

2

)

2

< �

�

a

(�): (20)

We shall show that the departure process conditioned to have mean rate

� does not have a linear geodesic. Let �(t) = (�

1

(t); �

2

(t)), be de�ned on

[0; 1] by �(0) = 0 and

_

�

1

(t) =

(

x

2

; 0 < t <

1

2

,

EX;

1

2

< t < 1.

_

�

2

(t) =

(

EC; 0 < t <

1

2

,

x

1

;

1

2

< t < 1,

(21)
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where x

1

, x

2

are as in (20). Then, since EX < EC, we have from (9)-(12)

that

�(�)(t) =

(

x

2

t; 0 � t �

1

2

,

1

2

x

2

+ (t�

1

2

)x

1

;

1

2

� t � 1.

(22)

and in particular that �(�)(1) = �. Therefore, by (8) and (13),

�

�

d

(�) � I(�)

=

Z

1

0

�

�

a

(

_

�

1

(s))ds+

Z

1

0

�

�

b

(

_

�

2

(s))ds

=

Z

1=2

0

�

�

a

(x

2

)ds+

Z

1

1=2

�

�

a

(EX)ds +

Z

1=2

0

�

�

b

(EC)ds+

Z

1

1=2

�

�

b

(x

1

)ds

=

1

2

[�

�

a

(x

2

) + �

�

b

(x

1

)]

< �

�

a

(�) (23)

The �rst equality above follows from (6) and (7), the second from the de�n-

ition of � in (21), and the last from the fact that �

�

a

(EX) = �

�

b

(EC) = 0,

see [3] for example. The last inequality above holds because of (20). Notice

that the departure process �(�) in (22), corresponding to the arrival process

�

1

and service process �

2

, is not linear but has di�erent slopes x

2

and x

1

in

two di�erent periods of equal length.

Next, let  (t) be linear on [0; 1] with  (0) = 0 and  (1) = �, so that

_

 (t) = � for all t 2 (0; 1). Consider any � 2 A

2

such that  = �(�). That

is, (�

1

; �

2

) is any pair of arrival and service processes (excluding those whose

rate function is +1), corresponding to which  is the departure process.

Then, by (9)-(12),

 (t) = inf

0�s�t

h

�

1

(s)� �

2

(s)

i

+ �

2

(t); (24)

from which it is clear that  (t) � �

1

(t). In particular, �

1

(1) � �. If �

1

(1) =

�, then, by (6),

I(�) �

Z

1

0

�

�

a

(

_

�

1

(s))ds

� �

�

a

�

Z

1

0

_

�

1

(s)ds

�

= �

�

a

(�): (25)
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The �rst inequality is due to the non-negativity of �

�

a

, �

�

b

, the second holds

because of Jensen's inequality and the convexity of �

�

a

, while the equality is

because �

1

(1) was assumed to be �. If �

1

(1) > �, de�ne

� = supft 2 [0; 1] : �

1

(t) � �tg (26)

and note that � < 1. Hence, by continuity of �, �

1

(� ) = �� .

Lemma 1 Suppose that  (t) = �t for all t 2 [0; 1], where  is de�ned by

(24), and that � 2 A

2

. Then, with � given by (26),

�

2

(t)� �

2

(� ) = �(t� � ) 8 t 2 [�; 1]:

Proof : As noted above, �

1

(� ) = �� =  (� ), the latter equality holding

by assumption regarding  . From this, we see that the in�mum in (24)

corresponding to t = � is achieved at s = � . Consequently, (24) implies that

 (t) = inf

��s�t

h

�

1

(s)� �

2

(s)

i

+ �

2

(t) 8 t � �: (27)

If the in�mum above is achieved at � for all t 2 [�; 1], then, for all t in

this interval, �

2

(t) � �

2

(� ) =  (t) �  (� ) = �(t � � ), and so the lemma

is established. Otherwise, because � is absolutely continuous, one of the

following must hold:

9 � > 0 :

_

�

1

(s)�

_

�

2

(s) < 0 8 s 2 (�; � + �); (28)

or

T

�

= inffs > � : �

1

(s)� �

2

(s) < �

1

(� )� �

2

(� )g 2 (�; 1): (29)

In the former case, the in�mum in (27) corresponding to t = �+ � is achieved

at s = � + �, and so

 (� + �)�  (� ) = �

1

(� + �)� �

1

(� ) > ��; (30)

where the inequality follows from the de�nition of � in (26). In the latter

case, we see from the continuity of � that the in�mum in (27) corresponding

to t = T is achieved at s = T . So  (T ) = �

1

(T ) and

 (T )�  (� ) = �

1

(T )� �

1

(� ) > �(T � � ); (31)

where the inequality follows from (26). Now, both (30) and (31) contradict

the assumption that  (t) = �t for all t 2 [0; 1]. Therefore, neither (28) nor

(29) can hold, implying that the in�mum in (27) must be achieved at � for

all t 2 [�; 1]. This completes the proof of the lemma.
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From the above lemma and (26), we obtain using (6) that

I(�) �

Z

�

0

�

�

a

(

_

�

1

(s))ds+

Z

1

�

�

�

b

(

_

�

2

(s))ds

� ��

�

a

(�) + (1� � )�

�

b

(�)

= �

�

a

(�): (32)

The �rst inequality is due to the non-negativity of �

�

a

, �

�

b

and the second

due to their convexity and Jensen's inequality. The equality follows from the

de�nition of � in (18).

Let  be given by  (t) = �t, t 2 [0; 1]. Since either (25) or (32) applies

to any � 2 A

2

for which �� =  , observe from (8) that I

d

( ) � �

�

a

(�).

Therefore, by (23),  does not achieve the in�mum in (13) corresponding to

z = �. In other words, the departure process with constant rate � is not

the most likely to achieve an average departure rate �; this is achieved by a

process with a nonlinear path. This implies that I

d

cannot be expressed in

the form

I

d

(�) =

Z

1

0

�

�

(

_

�)ds

for any convex function �

�

and so the departure process does not satisfy

assumption (A2).

The above conclusion applies to a queue started empty. We now consider

a queue in stationarity. Let Q

0

denote the queue length at time 0. It is

shown in [4] that the scaled queue lengths Q

0

=n satisfy an LDP in IR with

rate function L, which is explicitly computed. For our purposes, it is enough

to note that L(0) = 0 and that L(q) � 0 for all q > 0. Suppose the scaled

initial queue length is q, and that the scaled process of arrivals and services

is described by � = (�

1

; �

2

). Then, the scaled departure process up to time

t is given by

D(q; �)(t) = �

2

(t) ^ inf

0���1

[q + �

1

(�t)� �

2

(�t) + �

2

(t)]; (33)

where x ^ y denotes minfx; yg. Notice that since �(0) = 0, we recover (10)

for the departure process from an empty queue by substituting q = 0. We

shall show that for any q > 0 and � 2 L

2

such that D(q; �(t)) = �t for all
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t 2 [0; 1], we have L(q) + I(�) � �

�

(�). This will enable us to conclude that

the departure process does not have linear geodesics, even in equilibrium.

Let  be linear on [0; 1] with  (t) = �t for all t 2 [0; 1]. Fix q > 0 and

let � 2 C

2

be such that D(q; �) =  . Then, by (33), either �

2

(t) = �t for all

t 2 [0; 1], or q + �

1

(s)� �

2

(s) < 0 for some s 2 [0; 1]. In the former case, we

have by (6), (7) and the non-negativity of the �

�

that

I(�) �

Z

1

0

�

�

b

(

_

�

2

(s))ds = �

�

b

(�): (34)

In the latter case, we have by the continuity of � that

�

�

= inffs 2 [0; 1] : q + �

1

(s)� �

2

(s) < 0g 2 [0; 1):

It follows that D(q; �(t)) = �

2

(t) for all t 2 [0; � ], whereas, for t 2 [�; 1],

D(q; �)(t)�D(q; �)(� ) = �

2

(t)� �

2

(� ) + inf

��s�t

[q + �

1

(s)� �

2

(s)];

because q + �

1

(s) � �

2

(s) takes its minimum value on [0; � ] at � , and this

value is zero. Hence, we can rewrite the above as

D(q; �)(t)�D(q; �)(� )

= inf

��s�t

h�

�

1

(s)� �

1

(� )

�

�

�

�

2

(s)� �

2

(� )

�i

+ �

2

(t)� �

2

(� ): (35)

De�ne

~

�(t) = �(t)� �(� ), t 2 [�; 1]. Then, we have from above that

 (t) =

(

�

2

(t); if t 2 [0; � ],

inf

��s�t

h

~

�

1

(s)�

~

�

2

(s)

i

+

~

�

2

(t) + �

2

(� ); if t 2 (�; 1].

(36)

Comparing this with (24), we see that the departure process on [�; 1] is

identical to that from an empty queue with arrival and service processes

given by

~

�. This is not surprising because the queue does, in fact, become

empty at time � by de�nition of � . Since

~

�, restricted to [�; 1], is merely

a shifted version of � on this interval, I(�) = I(

~

�) for � restricted to this

interval. Therefore,

I(�) �

Z

�

0

�

�

b

(

_

�

2

(s))ds+ I(

~

�):

9



Now, since  (t) = �t,

_

�

2

(s) = � for all s 2 [0; � ]. Also, by the same

derivation as leads to (25) and (32), we have I(

~

�) � (1 � � )�

�

a

(�). Finally,

since �

�

a

(�) = �

�

b

(�) by de�nition of �, and L(q) � 0 for all q, we get

L(q) + I(�) � �

�

a

(�):

This holds for all initial queue lengths q � 0, and arrival and service pro-

cesses �, that result in a linear departure process  (t) = �t. Note that (23)

continues to hold for departures in equilibrium because it was derived for

departures from an empty queue, and we have L(0) = 0, see [4]. Therefore,

�

�

d

(�) < inffL(q) + I(�) : D(q; �)(t) = �t 8 t 2 [0; 1]g; (37)

which implies that, conditional on a mean departure rate of �, the most likely

path is not linear. Thus, even in equilibrium, the departure process does not

necessarily have linear geodesics.

We end this subsection with some comments about the scope and implic-

ations of the above results. A careful look at the proof shows that the result

relied on � being less than EX and on the rate functions of the arrival and

service processes intersecting at �. If the service process is deterministic, the

latter cannot happen, and in this case it can be shown that the departure

process has linear geodesics. This makes it possible to analyze networks of

deterministic server queues, as in Chang [2]. Likewise, if we consider only

� > EX, then too it can be shown that the departure process conditioned on

having mean rate � is linear. Since we are typically interested in the problem

of queue lengths exceeding some large threshold, and since in well-designed

networks this requires departure rates exceeding their mean, we are usually

only interested in the rate function of departures for � > EX. Since we

have linear geodesics in this region, the study of networks of queues using

a recursive approach is again feasible. Such an approach has been taken in

Bertsimas et al., [1]. We shall next show that neither of these features comes

to our rescue when dealing with multi-class queues. In this case, the joint

departure process can have non-linear geodesics even if the server is determ-

inistic, and even if we consider departures whose aggregate rate exceeds their

mean.
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2.2 Two customer classes

Consider a queue multiplexing two customer classes, and served determinist-

ically at rate c. Suppose that customers from the �rst class arrive determin-

istically at rate a, while those of the second have a stochastic arrival process

satisfying assumptions (A1)-(A3) with the rate function �

�

2

. We assume that

the mean aggregate arrival rate is strictly less than the service rate, c. Note

that the two arrival streams are trivially independent, as are the arrival and

service processes. We denote the large deviations rate function of the �rst

arrival process by �

�

1

and that of the service process by �

�

b

. So

�

�

1

(x) =

�

0; if x = a,

+1; else.

�

�

b

(x) =

�

0; if x = c,

+1; else.

(38)

For some � > 0 and b < c+ ��a, let z = (a��; b) and consider the departure

process conditioned to have mean rate z. We shall show that this departure

process does not have linear geodesics.

Let  2 A

2

be linear with  (0) = 0 and  (1) = z, so

_

 = z. We

show that there is no � 2 A

3

with I(�) < +1 such that �(�) =  . In other

words, there is no process of arrivals and services whose rate function is �nite,

corresponding to which  is the departure process. Suppose otherwise. Let

� 2 A

3

have I(�) < +1, so that

�

1

(t) = at; �

3

(t) = ct; (39)

and suppose that

�(�)(t) =  (t) = ((a� �)t; bt) ; (40)

where � > 0 and a+ b� � < c. Observe from (9)-(12) that

�(�)(t) =

�

�

1

�

T (�)(t)

�

; �

2

�

T (�)(t)

��

: (41)

Therefore, by (39) and (40), T (�)(t) = (a��)t=a, and so �

2

�

(a��)t=a

�

= bt.

In addition, by (11),

D(�)(t) = �

1

(T (�)(t)) + �

2

(T (�)(t)) = (a+ b� �)t: (42)

But, by (10),

D(�)(t) = inf

0�s�t

[�

1

(s) + �

2

(s)� �

3

(s)] + �

3

(t);

11



and so, by (39) and the fact, noted above, that �

2

(s) = abs=(a� �), we get

D(�)(t) = inf

0�s�t

[as+

abs

a� �

� cs] + ct

=

(

ct; if

a

a��

(a+ b� �) � c,

a

a��

(a+ b� �)t; else.

Because of our assumption that a+ b� � < c, we have D(�)(t) > (a+ b� �)t

in either case above, contradicting (42). We have thus shown that, if I(�) <

+1, then �(�) =  is impossible for  (t) = zt with z = (a��; b). Therefore,

by (8), I

d

( ) = +1.

We now show that �

�

d

(z) < +1 for z as above. Since � > 0 was arbitrary,

we assume without loss of generality that a� � > 0 and de�ne

x

1

= a+ 2(b � �)� c; x

2

=

a

a� 2�

(c� a+ 2�): (43)

Since the only requirement we imposed above was that a + b � � < c, it is

clear that b and � can be chosen so that x

1

� 0. Also, x

2

> 0 since it was

assumed that c is larger than a. Let � 2 A

3

be de�ned by

�(0) = 0;

_

�(t) =

�

(a; x

1

; c); 0 < t < 1=2,

(a; x

2

; c); 1=2 < t < 1.

(44)

Since x

1

and x

2

are non-negative, � has non-decreasing components as re-

quired by the de�nition of A

3

. Note that

a+ x

1

= 2(a+ b� �)� c < c

by the assumption that a+ b� � < c, whereas

a+ x

2

=

ac

a� 2�

> c:

In other words, the aggregate arrival rate a + x

1

is less than the service

rate c during [0; 1=2] whereas, at a+ x

2

, it is greater than c during [1=2; 1].

Therefore, the joint departure process �(�) is given by

�(�)(0) = 0;

d

dt

�(�)(t) =

(

(a; x

1

); 0 < t < 1=2,

�

a

a+x

2

c;

x

2

a+x

2

c

�

; 1=2 < t < 1.

(45)

12



This is intuitively clear from the description of the queue, but can also be

formally established using (9)-(12). Hence, we have from (43) that

�(�)

1

(1) =

1

2

�

a+

ac

a+ x

2

�

= a� �;

�(�)

2

(1) =

1

2

�

x

1

+

x

2

c

a+ x

2

�

= b:

Therefore, by de�nition of z, ��(1) = z. Furthermore, by (44), (6) and (38),

we have

�

�

(�) =

1

2

(�

�

2

(x

1

) + �

�

2

(x

2

)) (46)

for x

1

, x

2

as in (43). Therefore, �

�

(�) is �nite if �

�

2

(x

1

) and �

�

2

(x

2

) are, as is

true if, for instance, the second arrival process is Poisson. It now follows from

(8) and (13) that �

�

d

(z) < +1. But we showed earlier that I

d

( ) = +1

for  given by  (t) = zt. Therefore, the departure process with linear path

does not achieve the in�mum in (13), implying that the departure process

does not satisfy a large deviations principle with action functional that is the

integral of a convex rate function. In other words, it is not true that

I

d

(�) =

Z

1

0

�

�

(�(s))ds

for any convex function �

�

. Consequently, the joint departure process does

not satisfy assumption (A2), and so a recursive approach to estimating

asymptotics of the queue lengths in a network does not appear feasible.

We now consider the same queueing system in stationarity, rather than

started empty. It is shown in O'Connell [4] that in stationarity, the scaled

queue lengths Q

0

=n satisfy an LDP in IR

2

with a rate function L that can be

computed explicitly. Here Q

0

= (Q

1

0

; Q

2

0

) denotes the number of customers

of each of the two types in the queue at time zero. It su�ces for our purposes

to note that L(q) � 0 for all q � 0, with equality if q = 0.

Consider the system starting at time zero with scaled queue lengthQ

0

=n =

q. Suppose the arrival and service processes are given by � = (�

1

; �

2

; �

3

),

and that  = ( 

1

;  

2

) is the corresponding departure process. Let a and c

be de�ned as above to be the deterministic rate of the �rst arrival process

and the service process respectively. Let � 2 (0; a) and b > 0 be such that

a + b � � < c. We shall show that if  (t) = zt for all t 2 [0; 1], where

z = (a� �; b), then L(q) + I(�) =1.

13



Analogous to (33), the scaled process of aggregate departures up to time

t is given by

D(q; �)(t) = �

3

(t) ^ inf

0���1

[q +A(�)(�t)� �

3

(�t) + �

3

(t)]; (47)

where q

�

= q

1

+q

2

is the total number in queue at time zero, and A(�)

�

= �

1

+�

2

is the aggregate arrival process. Note that setting q = 0 above recovers (10)

since �(0) = 0. Now, if  is to be the departure process, then we must have

D(q; �) =  

1

+  

2

. Since  (t) = zt, with z = (a � �; b), the above implies

that D(q; �) = (a + b � �)t for all t 2 [0; 1]. Recall that if I(�) is to be

�nite, then we must have �

1

(t) = at and �

3

(t) = ct for all t 2 [0; 1], since the

�rst arrival process and the service process are deterministic with rates a, c

respectively. Therefore, for all such �, (47) implies that

(a+ b� �)t = ct ^ inf

0�s�t

[q +A(�)(s)� cs] + ct:

Since a+b�� < c, the above implies that inf

0�s�t

[q+A(�)(s)�cs] is strictly

negative for all t > 0. Now A(�)(s) = �

1

(s) + �

2

(s), �(0) = 0 and � is

continuous if I(�) is �nite. Therefore, it follows from the above that q = 0,

i.e., the queue must start empty. Then, by the argument above for departures

from an empty queue, there is no process � of arrivals and services such that

the departure process is  and I(�) is �nite. We have also shown that this

conclusion does not change if we allow any positive initial queue size, q. This

completes the proof that I

d

( ) = 1 even in equilibrium, where I

d

denotes

the rate function of the departure process.

We argued above that �

�

d

(z) < 1 for departures from an empty queue.

Since L(0) = 0, see [4], this argument applies to departures in equilibrium

as well. Thus, the most likely path leading to a mean departure rate z is

not linear. This also implies that the rate function I

d

( ) for equilibrium

departures cannot be of the form

R

1

0

�

�

(

_

 )(s)ds, for any convex function �.

Therefore, the departure process does not satisfy Assumption A2, needed

to apply the results of [4] inductively to feed-forward multi-class queueing

networks.
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