
Process Modelling to Support Object-Oriented Software

Production

Kann-Jang Yang, Rob Pooley

Department of Computer Science

Edinburgh University

JCMB King's Buildings, May�eld Road

Edinburgh EH9 3JZ, UK

fky,rjpg@dcs.ed.ac.uk

Abstract

Recently, the concepts of software process modelling and object-oriented methodology

have been widely discussed in the literature to tackle the problems of software develop-

ment. In this article, we will concentrate on the method that uses formal speci�cation

techniques to model the software process. PASTA (Process and Artifact State Transition

Abstraction) is a bridge between guidance and automation of the software development

process. By using PASTA to model the Booch method, a double advantage can be ob-

tained in software development. Furthermore, the rapid advancement of workstation and

communication technologies has accelerated the spread of the distributed development

paradigm for software development. A process-centred software environment with these

advances could result in a shortening of the development cycle and potentially an im-

provement in productivity and quality.

Keywords: software process, process modelling, object-oriented methodology, software

factory

Submission type: Research paper

1 Introduction

The software industry has experienced a dramatic change in last few years. As The Economist

reported[1]: In 1990 just a few academics had heard of the Internet; now, anything up to 50m

people use it. In a year's time, that �gure could be 100m. At the moment, no one can deny

the WEB has changed some things for the software industry. As a consequence, software

development is not only a local business but a team work with international competition.

Lai [2] described the steps of the software industry. The �rst wave of software was de-

veloped using the waterfall model, introduced in 1970. Today we are in the midst of a second

wave, a maturity movement, as we attempt to formally de�ne the development process and

the best ways to continuously improve it. The third wave will involve the mechanisation of the

software industry, characterised by the mass production of uniformly high quality products.

1

Since time-to-market is one of the most critical issues in the software industry, the pressure

of developing software is getting higher for the project manager. To develop software projects

quickly, the software factory concept, analogous to the mass production line of the automobile

factory, would be a good solution. The software industry would likely evolve in two directions.

Firstly, a software component industry would supply �ne-grained components that would

eventually end up in enormous numbers of software products. Secondly, a CASE tool would

o�er process control and automatically generate the relevant codes. As a consequence, the

traditional software industry would change dramatically. Software development would not be

a hand-craft industry any more, but assemble software products from purchased components

with good process control.

However, some experts have di�erent opinions. In his book Pressman [3] discussed software

characteristics. He said that software is developed or engineered, it is not manufactured in the

classical sense and concluded that software is a logical rather than a physical system element.

Quintas[4] and Humphrey[5] also suggested that software is designed and developed rather

than being manufactured. Much of software activity is non-routine, and has traditionally

been highly dependent on the skills of the programmer. This implies that it is impossible to

develop software in the same manner as physical components.

Standardised designs and interchangeable components are the key points in mass pro-

duction for traditional industries. By means of scheduling of component production and

arranging factory layouts, the products are produced quickly and uniformly. Everybody must

agree that software development is di�erent from traditional industry. It is highly dependent

on the skills of large numbers of IT professions: analysts, designers, programmers, project

managers and so on. They are labour-intensive activities but, in contrast to the traditional in-

dustry, there are more communication processes and social interactions within the developers'

community.

Cusumano[6] found that with standardised but specialised skills, procedures, and tools

controlling the work process, software factories are allowed, by increased
exibility, to adapt

to di�erent customer needs or changes in the work
ow. Consequently, enacting the software

process to ensure software quality and productivity has been a very active research area in

the software development environment communities. In the EPOS[7, 8] project, the process

models are expressed in SPELL, a process modelling language. The internal process model is

a network of activity descriptions, being linked to descriptions of other tasks, products, tools,

and roles. The activities interact with each other and with tools and humans. In the SPADE[9,

10] project, a process language, SLANG, has been de�ned, which is a fully re
ective language

built over a high-level extension of Petri nets. It provides execution mechanisms to cope

with the evolution problem. What others have done is to develop integration mechanisms.

A European research e�ort funded under the Eureka program, the ESF (Eureka Software

Factory)[11, 12, 13] is a project that aims at a Factory Support Environment (FSE). The FSE

architecture, built around standard interfaces between subsystems, will enable a high degree of

independence from any particular set of software engineering tools or computer systems. The

communication between the systems in the FSE takes place over a communications channel

called the Software Bus. The same e�orts have been made on the ISPW[14] and SPMS[15]

projects. However, previous work focused on project management and group coordination

processes. There are few studies that have been done on basic processes, such as analysis

and design. The software process model must be able to control not only coordination and

cooperation between groups but also basic processes.

This paper presents some preliminary results from a project which is examining support

2

for the software enginering process in the context of e�orts to produce "software factories".

Its objectives are to use the bene�ts of conventional factory style production organisation in

the context of software production. It takes the object oriented view of software as a basis

for a component based software production method.

The rest of this paper is organised as follows. Section 2 clari�es the motivation in writing

this paper. Section 3 outlines the environment used to experiment with these ideas. Section

4 presents methods and mechanisms in managing process model. Finally, some conclusions

and further works are outlined in section 5.

2 Motivation

In the 60's and 70's, public recognition of a 'software crisis' came from people who had been

working on the largest and most complex systems development projects. This problem is

concerned with a failure to meet the demand for applications and to deliver systems on time

and within agreed costs. Industry and government organisations had realized that without

the ability to manage the software process, it would be di�cult to control a software pro-

ject even if there are good methods and tools. To control software process, the Capability

Maturity Model(CMM)[16], developed by the Software Engineering Institute(SEI) in Carne-

gie Mellon University, has become a standard to improve the software development process

for many organisations. Moreover, the government has used the SEI's Software Capabil-

ity Evaluation to select a contractor[17]. The CMM was designed to help developers select

process-improvement strategies by determining their current process maturity and identify-

ing the most critical issues to improve their software quality. However, the CMM does not

specify how you must perform software development or management activities. That means

that the CMM represents a destination, not a road map. Unfortunately, there are still lots of

misconceptions in the CMM[18].

The CMM for software provides software organisations with guidance on how to gain

control of their processes for developing and maintaining software. As SEI de�ned[19]:

A software process can be de�ned as a set of activities, methods, practices,

and transformations that people used to developed and maintain software and the

associated products.

Thus, for developing a complex software product, a well-de�ned software process is es-

sential. With a standard process, the members in the developing team know their roles and

responsibilities. It is easy to follow the procedure to develop a software project. Moreover,

object-oriented analysis and design have much in common. The same object-oriented con-

cepts, techniques, and notations used in analysis apply equally well in design. As a con-

sequence, the same development tools can be used to support both activities. Often, these

similarities make it hard to tell which activity is being carried out[20]. As Booch[21] men-

tioned, a well-de�ned process must provide guidance as to the order of a team's activities.

Processes would give OOA and OOD a good framework to develop a software project.

Moreover, the rapid advancement of telecommunication technologies and software devel-

opment techniques have accelerated the spread of the distributed development paradigm for

software development. Aoyama [22, 23] suggested that the software development process

should be changed from centralised, serial development to distributed, concurrent develop-

ment. How can we do that? Basicly, the Web would become the ideal platform for collab-

3

orative work. By means of integrating software process with Web, developers can track the

process on the net. It can hook developers with a network via the Internet.

3 Experiment environment

3.1 PASTA

Just as software is a description based on an abstracted model of a real-world problem, soft-

ware process description is based on an abstracted model of a software development process.

It provides bene�ts because it:

� provides a precise, unambiguous description of the process.

� provides a basis for building and integrating process tools.

� allows all parties concerned (technologists, developers, managers) to agree (standardise)

on the process.

� provides a basis for process improvement/process evolution.

� provides information for process and project management to reason about the status of

a project.

PASTA (Process and Artifact State Transition Abstraction) is a bridge between guidance and

automation of the software development process. It enables a process engineer to model any

process to any level of detail [24].

By building on the simple paradigm that people (roles) and resources perform activities

that lead to products (artifacts), and by providing a rich set of relationships among those

basic ingredients of a process, it is possible to model the process and to maintain state tables

that contain information about the completeness of the product. Therefore, it is possible

to know, at any given time, the state of completeness of all artifacts, and hence the state of

completeness of the project. This provides the project manager with great insight and control

over the events in the project.

3.1.1 Primary Elements of a Generic Model

� Artifact and A-State

A software development process is a sequence of decision-making activities. Artifacts

capture the decisions made during the software development process. Examples of

artifacts include modules, objects, packages, or subroutines. To characterise the state of

a software development process, the engineer must characterise the state of the artifacts

produced during the software process. The states belong to the low level in the PASTA

model; such states are called artifact state (A-states).

However, merely characterising the state of the artifacts is insu�cient to describe a com-

plete software process. The process modeler must also describe the activities that may

be performed on artifacts, the conditions under which those activities are performed,

and the roles of the people who may perform them. For example, activities that the

engineer might perform on an interface speci�cation of a software module are creating

the speci�cation, checking it for completeness and consistency, and conducting a formal

review of it. It is necessary to de�ne the upper level state model in PASTA.

4

� Process and P-State

Because A-states alone are insu�cient to describe the software process completely, de-

scriptions of activities, operations on artifacts, analyses that the engineer can perform

on artifacts within the state, and the roles of the people involved augment the A-states.

These augmented states are called process states (P-states).

Whether it is possible to perform an activity depends on the state of the artifacts. At

any point in time, the set of performable activities represent the choice of artifacts on

which the developers may work. Those that are not performable represent the artifacts

on which he may not work. PASTA prescribes a permissive ordering of activities by

specifying which activities are performable and which are not at any point. So, the

process modeler speci�es a permissive ordering to support a realistic process. In addition

to specifying artifacts and activities, the process modeler also speci�es the roles played

by people involved in software development.

By augmenting state descriptions with activities and other process-related information,

the process modeler can analyse the needs of the developers at any point in the process.

The goal of the analysis is to present to the developers the information that they need

at the time they need it. It also helps focus on the concerns of what guidance to give

to the developers and what analyses the process modeler can perform on the software

at any time. Finally, it helps separate the concern of what information the process

modeler should present to the developers from how the process modeler should present

information to them.

3.1.2 The Process Notation

For a software process to be fully described under the PASTA process model, a notation is

necessary for the process modeler to precisely de�ne the process in his mind. The developers

can use this notation to represent the necessary process-centred software environment for a

project. The process modeler can do mapping by interpreting the software process description

in a formal process notation and generating the activities coordination program to integrate

tools. There are three forms of notation in PASTA: Form, Textual Language, and Graphical

Diagrams.

� Form

The process notation is in terms of a set of forms. Each form represents a template

which asks for some data to be provided to describe the process. So far, there are nine

form templates in PASTA model:

{ Artifact de�nition

{ Relation de�nition

{ Process state de�nition

{ Operation de�nition

{ Analysis de�nition

{ Action de�nition

{ Role de�nition

{ Resource de�nition

5

{ Communication de�nition

In these forms, some of the data is formal. It is exactly the same as the data for the

textual language. Some of the data is informal, i.e., an English explanation for an item.

� Textual Language

Textual language is the centrepiece of PASTA's generic formal process notation. To-

gether the form and graphical diagrams should contain a full set of information that the

textual language will cover. The process modeler generates the textual language rep-

resentation of the process model on the back end of the form/diagram browser/editor for

the process notation. This textual representation is passed to the compiler/translator/automatic-

instantiator to generate the process-centred software environment.

� Graphical Diagrams

{ P-State Transition Diagram

Figure 1 shows an example of a P-state transition diagram. A P-state is represented

as a rectangular box with two kinds of boxes that can intersect with it. They are

the entrance and exit conditions. A set of cells divides the condition box. Each cell

represents one artifact in one A-state which composes the entrance/exit conditions.

The intersection lines between the condition box and the P-state box divides the

cells into two parts. The parts outside of the P-state contain the name of the

artifacts, and the parts inside of the P-state represent the A-state of the artifact.

Each artifact cell may have more than one line connected to it. This means that

an A-state change of an artifact may a�ect more than one P-state.

P-state

A-state

Artifact

Artifact

A-state

A-state

A-state

Artifact

Artifact

P-state

P-state

Artifact

Artifact

Artifact

Artifact Artifact

Artifact

Artifact A-state

A-state

A-state

A-state

A-state A-state

A-state

A-state Artifact

Figure 1: P-state Transition Diagram Example

{ A-State Transition Diagram

Figure 2 shows an example of an A-state transition diagram. An A-state transition

diagram, similar to a conventional state transition diagram, represents a view of

6

the dynamic model of an artifact. By using the A-state transition diagram, we can

follow the event-ordered behaviour of the artifact. There are two essential elements

in the A-state transition diagram. The node represents the A-state and the arc

represents the operation which makes the A-state change.

operation 2

operation 1

operation 3

operation 4

operation 5

A-state 1 A-state 2

A-state 3 A-state 4

A-state 5

Figure 2: A-state Transition Diagram Example

3.2 Booch's object-oriented methodology

The Booch method is one of the most well-known and widely-used object-oriented analysis

and design methods. This method provides a handful of notations which cover the important

logical elements of an object-oriented architecture. Moreover, it adopts an iterative and

incremental development which is composed of macro and micro process. The macro process,

the primary concern of the software management team, is closely related to the traditional

waterfall life cycle, and serves as the controlling framework for the micro process which is the

primary concern of the individual developer or a small group of developers. In this section,

we present only a brief description. The details can be found in Booch's books [25].

� Macro process

{ Conceptualization: Bracket the project's risks by building a proof of concept.

{ Analysis: Develop a common vocabulary and a common understanding of the sys-

tem's desired behaviour by exploring scenarios with end users and domain expert.

{ Design: Establish a skeleton for the solution and lay down tactical policies for

implementation by drafting the system's architecture.

{ Evolution: Re�ne the architecture and package releases for deployment; this phase

typically requires further analysis, design, and implementation.

{ Maintenance: Continue the system's evolution in the face of newly-de�ned require-

ments.

7

� Micro process

{ Identifying classes and objects

{ Identifying the semantics of classes and objects

{ Identifying relationships among classes and objects

{ Implementing classes and objects

As mentioned previously, the Booch method o�ers a handful of notations to capture all

important strategic and tactical decisions. When related notations are woven together they

build an architecture for the software development. The notations are as follows:

� Class diagram

� State transition diagram

� Object diagram

� Interaction Diagram

� Module Diagram

� Process diagram

4 Process Model Creation Using PASTA

In the object-oriented paradigm, object-oriented analysis and design have much in common.

These similarities make it hard to tell which activity is being carried out. For CASE tools, a

class diagram is just a class diagram. No one knows what part of the class diagram is from

analysis or design. This is why we need to model the software process. To produce a model

of a software process we use the process notations to describe and manipulate the process

artifacts. Following the process notations, we would be able to specify what artifacts should

be developed and direct the tasks of individual developers as a whole, so that it can ensure

that the process evolves according to desirable rules and procedures. The process model is a

prescription for the artifacts to be used, the activities to be performed and their sequencing,

and the roles that people play.

4.1 The Notations

4.1.1 The Artifact De�nition

To model the Booch method by using PASTA, �rstly, we must de�ne the artifacts of the

Booch method. The clearest artifacts would be the artifact which contains data objects

related to software products. Booch in his book[25] de�ned that the analysis of a system

will include sets of object diagrams, class diagrams, and state transition diagram, and the

design of a system will include sets of class diagrams, object diagrams, module diagrams, and

process diagrams. These would give us a direction to follow even though it is still not clear

for class and object diagrams in analysis and design. However, these kinds of diagrams would

be the basic artifacts in the process. Secondly, we must identify dependency and composition

relations among the artifacts. In practice, we must further de�ne the subartifacts of these basic

8

notations and �nd their relations. Each artifact might be divided into many subartifacts. The

more subartifacts you can �nd, the more detailed the model you can de�ne. Finally, we use

the A-state model to identify a set of states for each artifact. The A-state can be thought of as

de�ning a state machine for each artifact. The developer traverses the states to complete the

artifact by following the operations. Figure 3 shows the A-state transition diagram of artifact

Analysis Model. Combining the artifact de�nition form of artifact Analysis Model(Figure 4),

they give developers a clear process to follow.

Referenced Class_Diagram_Created

Analysis_Model_Defined

Analysis_Model_Verified

Object_Scenario_Diagram_Created

[Draft_Object_Scenario_Diagram]

[Develop_Class_Diagram]

State_Transition_Diagram_Created

[Draft_State_Transition_Diagram]

[Develop_Object_Scenario_Diagram]

[Verify_Analysis_Model]

[Develop_State_Transition_Diagram]

Figure 3: A-state transition diagram of artifact Analysis Model

4.1.2 The Process State De�nition

To reconcile the creative needs of individual programmers with management's needs for sta-

bility and predictability, Booch suggested useing the macro and the micro process. These

processes provide a hierarchical structure for the set of P-states. From the macro process, we

might represent the design as a single P-state at the top level of the model. Then, we might

decompose the design P-state into a hierarchy of P-states, as the micro process. This gives us

an architecture for the process state de�nition. In terms of the architecture, �rstly, we must

identify a set of operations for each artifact and identify entrance and exit conditions for each

operation. Since operations are the actions for accomplishing artifacts, developers by ways

of performing an action when the entrance condition for the operation is true would connect

to an existing tool or a function library to complete artifacts. Figure 5 shows the P-state

transition diagram of Develop Analysis Model. Its details are described in the process state

de�nition form(Figure 6).

4.2 Implementation for Process Notation

A process model must supply an architecture providing a fully integrated set of tools for

sharing information and developing application. In PASTA, the model speci�es the data upon

which the tools must operate, the operations to be performed by the tools, and the e�ects of

9

those operations. From notations, the implementation generates the software environment in

terms of tool integration and activities coordination. For each operation in each P-state, a

set of commercially available tools that we can use to perform the operations can be selected.

Meanwhile, to maintain artifact states, the notations would prevent forbidden transitions and

suggest possible transitions.

In the Process Model World, people only pay attention to the salient features of the process

such as the operations that they need to complete and the artifacts that they need to gen-

erate. Everything is an artifact or an operation. In the example of Develop Analysis Model,

while the need to develop an analysis model has been identi�ed, we enter two P-states, De-

velop Class Diagram and Develop Object Scenario Diagram. From zooming in the P-states,

the process state de�nition form would be traced. The artifact list provides the artifacts

which we need to generate and the operation list gives us the actions which we need to do

and connects to the tool which we can use to perform the operation. The sequence of doing

something is always governed by pre- and post-conditions. The modeler can easily use process

model to integrate di�erent software development tools to develop a software project.

5 Conclusion

In this paper we have presented our work on using PASTA to model the Booch method. A

de�ned process enables people to work more e�ectively by exploiting tools and experience and

predictably to control schedules, budgets, and product quality. By using PASTA to the model

Booch method, we standardise the software process, and provide a consistent environment

based on an organisation-wide understanding of the activities, roles, and responsibilities in

software industry. It is certainly not possible completing the whole model in a step. However,

we can modify it as we need from time to time. Once it is completed, the environment would

be generated for developing the software project.

Since the Internet is getting more popular nowadays, the Web has been viewed as a good

information infrastructure for collaborative engineering. A suite of collaboration tools which

are integrated with the Web enable the development team to share ideas and documents.

Moreover, for the security's sake, the booming intranet concept gives us a good environment

for the software industry. In the future, the PASTA model will be connected with the intranet

or private Web-based Internet networks. The de�nition forms and diagrams would be presen-

ted by using HTML. If powerful CASE tools are made available as services on the Web with

the PASTA model, developers can follow the P-state diagrams, A-state transition diagrams,

and de�nition forms to develop the software product with integrating CASE tools. By sharing

design information across the development team, developer expertise with those tools can be

preserved. Furthermore, via the distributed, world-wide environment, the development team

could be in di�erent buildings, di�erent cities, even di�erent countries. As a consequence, for

time being or budget, the idea would give us a good direction for the software development.

10

References

[1] \Why the Net should grow up," The Economist, October 19th 1996.

[2] R. Lai, \The Move to Mature Processes," IEEE SOFTWARE, pp. 14{17, July 1993.

[3] R. S. Pressman, Software Engineering, A Practitioner's Approach. McGrew-Hill Book

Company Europe, european ed., 1994.

[4] P. Quintas, Social Dimeensions of Systems Engineering. ELLIS HORWOOD Limited,

1993.

[5] W. S. Humphrey, Managing the Software Process. Addison-Wesley Publishing Company,

1989.

[6] M. A. Cusumano, Japan's Software Factories. Oxford University Press, 1991.

[7] M. L. Jaccheri and R. Conradi, \Techniques for Process Model Evolution in EPOS,"

IEEE Transactions on Software Engineering, vol. 19, pp. 1145{1156, December 1993.

[8] C. Liu and R. Conradi, \Automatic Replanning of Task Networks for Process Model Evol-

ution in EPOS," 4th European Software Engineering Conference, pp. 434{450, September

1993.

[9] S. C. Bandinelli, A. Fuggetta, and C. Ghezzi, \Software Process Model Evolution in the

SPADE Environment," IEEE Transactions on Software Engineering, vol. 19, pp. 1128{

1144, December 1993.

[10] S. C. Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza, \The Architecture of the

SPADE-1 Process-Centered SEE," Software Process Technology, Third European Work-

shop, EWSPT '94, pp. 15{30, February 1994.

[11] C. Fernstrom, K. Narfelt, and L. Ohlsson, \Software Factory Principles, Architecture,

and Experiments," IEEE Software, pp. 36{44, March 1992.

[12] R. Adomeit, W. Deiters, B. Holtkamp, F. Schulke, and H. Weber, \K/2R: A Kernel for

the ESF Software Factory Support Environment," ICSI '92 Proceedings of the Second

International Conference on Systems Integration IEEE, pp. 325{336, June 1992.

[13] C. Fernstrom, \The Eureka Software Factory: Concepts and Accomplishments," 3rd

European Software Engineering Conference, ESEC '91, pp. 23{36, October 1991.

[14] I. robertson, \An Implementation of the ISPW-6 Process Example," Software Process

Technology Third European Worrkshop, EWSPT '94, pp. 187{206, February 1994.

[15] H. Krasner, J. Terrel, A. Linehan, P. Arnold, and W. H. Ett, \Lessons Learned from a

Software Process Modeling System," Communications of the ACM, vol. 35, pp. 91{100,

September 1992.

[16] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, \Capability Maturity Model,

Version 1.1," IEEE SOFTWARE, pp. 18{27, July 1993.

11

[17] D. Rugg, \Using Capability Evaluation to Select a Contractor," IEEE SOFTWARE,

pp. 36{45, July 1993.

[18] K. Wiegers, \Misconceptions of the CMM," Software Development, pp. 57{64, November

1996.

[19] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, \Capability Maturity Model

for Software, Version 1.1," Technical Report, CMU/SEI-93-TR-024, February 1993.

[20] A. Goldberg and K. S. Rubin, Succeeding with Objects. Addison-Wesley Publishing

Company, 1995.

[21] G. Booch, Object Solutions, Managing the Object-oriented Project. Addison-Wesley Pub-

lishing Company, Inc., 1996.

[22] M. Aoyama, \Concurrent-Development Process Model," IEEE SOFTWARE, pp. 46{55,

July 1993.

[23] M. Aoyama, \Distributed Concurrent Development of Software System: An Object-

Oriented Process Model," Proc.Compsac, IEEE CS Press, pp. 330{337, 1990.

[24] R. Lai, \Process De�nition and Process Modeling Methods," Technical Report, Software

Productivity Consortium, SPC-91084, September 1991.

[25] G. Booch, Object-Oriented Analysis and Design with Application. The Ben-

jaminCummings Publishing Company, Inc., second ed., 1993.

12

 Artifact Definition Form
 Name Analysis_Model
 Synopsis The analysis model is the process of defining a precise, concise, and object-

oriented model of that part of the real-world enterprise that is relevant to the
system. It is through this process that the developers gain the detailed knowledge
of the problem domain needed to create a system capable of carrying out the
required functions.

 Complexity Type Composite
 Data Type Diagram

 A-State List

 Name Analysis_Model_Verified
 Synopsis The analysis model which includes class diagrams, object scenario diagrams,

and state transition diagrams has been verified.
 Condition state-of(Analysis_Model)=Analysis_Model_Verified

 Name Referenced
 Synopsis The need to develop an analysis model for a software project has been identified.
 Condition state-of(Analysis_Model)=Referenced

 Name Class_Diagram_Created
 Synopsis The class diagrams that are used to indicate the common roles and

responsibilities have been created.
 Condition state-of(Class_Diagram)=Class_Diagram_Created

 Name Analysis_Model_Defined
 Synopsis The analysis model has been defined.
 Condition state-of(Class_Diagram)=Class_Diagram_Created and state-

of(Object_Scenario_Diagram)=Object_Scenario_Diagram_Created
 state-of(State_Transition_Diagram) =State_Transition_Diagram_Created

 Name Object_Scenario_Diagram_Created
 Synopsis The object scenario diagrams that are used to provide a trace of the system's

behaviour have been created.
 Condition state-of(Object_Scenario_Diagrm) =Object_Scenario_Diagram_Created

 Name State_Transition_Diagram_Created
 Synopsis The state transition diagrams that are used to indicate the dynamic behaviour of

the system have been created.
 Condition state-of(State_Transition_Diagram)=Created

 A-State List

 Name Class_Diagram
 Synopsis A class diagram is used to show the existence of classes and their relationships

in the logical view of a system. During analysis, we use class diagrams to
indicate the common roles and responsibilities of the entities that provide the
system's behavior.

 Name State_Transition_Diagram
 Synopsis A state transition diagram is used to show the state space of a given class, the

events that cause a transition from one state to another. and the actions that
result from a state change. A single state transition diagram represents a view of
the dynamic model of a single class or of the entire system. During analysis, we
use state transition diagrams to indicate the dynamic behavior of the system.

 Name Object_Scenario_Diagram
 Synopsis An object scenario diagram is used to show the existence of objects and their

relationships in the logical design of a system. During analysis, we use object
scenario diagrams to indicate the semantics of primary and secondary scenarios
that provide a trace of the system's behavior.

1

Figure 4: De�nition form of artifact Analysis Model

13

Verify_Analysis_Model

Analysis_Model[Analysis_Model_Defined] [Verifed]Analysis_Model

Draft_Object_Scenario_Diagram

Object_Scenario_Diagram[Object_Scenario_Diagram_Created] [Analysis_Model_Defined]Analysis_Model

Draft_State_Transition_Diagram

State_Transition_Diagram[State_Transition_Diagram_Created] [Analysis_Model_Defined]Analysis_Model

Develop_State_Transition_Diagram

Class_Diagram[Class_Diagram_Created] [State_Transition_Diagram_Created]State_Transition_Diagram

Develop_Object_Scenario_Diagram

Analysis_Model[Referenced] [Object_Scenario_Diagram_Created]Object_Scenario_Diagram

Develop_Class_Diagram

Analysis_Model[Referenced] [Class_Diagram_Created]Class_Diagram

Figure 5: P-state transition diagram of Develop Analysis Model

14

 Process State Definition Form
 Name Develop_Analysis_Model
 Synopsis This step must identify three diagrams: class diagram, state tranisition diagram,

and object scenario diagram, to establish the boundaries of the problem at hand.
 Main Role Analyst, Project Manager
 Entrance Condition state-of(Analysis_Model)=Referenced
 Artifact List State_Transition_Diagram, Object_Scenario_Diagram, Class_Diagram
 Information
Artifacts

 Use_Case

 Sub-P-State List

 Name Develop_Class_Diagram
 Synopsis This step would develop a class diagram by identifying key classes, building

data dictionary, defining relationship, defining cardinality of relationship,
defining attribuute, and defining inheritance.

 Name Develop_State_Transition_Diagram
 Synopsis This step would develop state transition diagrams which is used to show the

state space, events, and actions. The state transition diagram is only for those
classes that exhibit event-order behaviour.

 Name Develop_Object_Scenario_Diagram
 Synopsis This step would develop object scenario diagrams which is used to show the

existence of objects and their relationships.

 Operation List

 Name Draft_State_Transition_Diagram
 Synopsis The state transition diagram has been drafted.

 Name Draft_Object_Scenario_Diagram
 Synopsis The object scenario diagram has been drafted.

 Name Verify_Analysis_Model
 Synopsis The analysis model included class diagrams, state transition diagrams, and

object scenario diagrams has been verified.
 Exit Condition ((state-of(Class_Diagram)=Identified)) and (state-

of(State_Transition_Diagram_in_Design)=Identified) and (state-
of(Object_Scenario_Diagram)=Identified))

 Informal
Specification

 Developing analysis model involves creating class diagrams, object scenario
diagrams and state transition diagram.

 Formal Specification

1

Figure 6: De�nition form of Develop Analysis Model

15

