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Abstract

This report introduces a message-passing multicomputer called the `Test-

bed' and describes the operating system and hybrid monitoring support for

load balancing. A series of experiments are reported in which detailed and

accurate performance �gures are established for the functions associated

with task migration, thus parameterising some key properties of the Test-

bed. A number of di�erent performance metrics are compared in terms of

their costs versus their utility for load balancing. Finally, a sample load

balancing strategy is outlined for the Testbed and speedup results obtained

for a range of applications.
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1 Introduction

This report introduces an experimental message-passing multicomputer called the

`Testbed' which was developed at Edinburgh University. The Testbed is unusual

because it o�ers dynamic load balancing, i.e. the moment-by-moment automatic

and transparent distribution of work amongst processors with the aim of minim-

ising execution time. In order to support load balancing the Testbed has a specially

extended operating system and dedicated performance monitoring hardware.

This report presents three sets of experiments which were performed using the

monitoring hardware as part of the design, tuning and evaluation of the Testbed's

load balancer. In the discussion below, the process of load balancing is considered

to have the following three phases.

1. A reconnaissance phase during which the loads currently experienced at

each processor are assessed. The loads reect the usage and capacity of each

critical resource at the processor.

2. A decision-making phase during which the load assessment is used to suggest

a better distribution of the application on the processors.

3. An execution phase during which a mechanism is invoked to redistribute the

application tasks.

In the �rst set of experiments the latencies of various system functions associ-

ated with load balancing were measured in order to assess the intrinsic perform-

ance properties of the operating system and communication hardware. Know-

ledge of these properties is vital for the design of the decision-making phase

where, for example, the bene�ts of executing two tasks on di�erent processors

must be balanced against the higher costs of inter-processor communication over

local communication. Knowledge of these properties is also useful for the design of

the execution phase, for instance when calculating the time that must be allowed

for a task to complete migration.

The second set of experiments relate to the reconnaissance phase and are used

to compare di�erent methods for assessing the load. Experience shows that it

is not trivial to �nd an aspect of the load which can be measured with minimal

overhead by each processor and also processed with minimal overhead into a form

suitable for the decision-maker.

In the �nal set of experiments the e�ectiveness of the Testbed's load balancer

is evaluated against a range of di�erent types of application. Two aspects are

measured|the net change in execution time and the quality of the load balancing

decisions made.

The rest of this report is organised as follows. In Section 2 the Testbed is

introduced in terms of its conventional features, its special task migration func-

tions and its dedicated monitoring hardware. Section 3 describes the �rst set of

experiments on measuring the intrinsic properties of the Testbed. The �rst part
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of Section 4 describes the second set of experiments on �nding the best way to

measure the load. The evaluation of the load balancer is described in the second

part of Section 4. Finally, the conclusions of the report are presented in Section 5.

2 Presenting the Testbed

This section introduces the Testbed|the multicomputer on which the practical

experimentation for this report was performed. The section is in two parts: a

description of the conventional aspects of the Testbed is followed by a more in-

depth description of the innovative features such as task migration and hybrid

event monitoring.

2.1 Conventional Features

The Testbed (also described in Imre [16]) is an experimental, distributed

memory, message-passing multicomputer constructed at the University of Edin-

burgh between 1988 and 1991. A free-standing cabinet about �ve feet high contains

a power supply, cooling fans, six processor boards, a bus-based processor intercon-

nect called Centrenet (a detailed description of which can be found in Ibbett et

al [14]) and special hardware for hybrid event monitoring. A single-user machine,

the Testbed has one RS-232 link to a terminal for operator control and a second

serial link to the local area network and hence access to a �lestore. Figure 1 gives

an overview of the Testbed hardware.

The Testbed operating system (TOS) is written in C and provides a time-

sliced, multi-tasking environment. TOS has a built-in shell which o�ers a typical

Unix interface to the user. TOS is replicated over all processor boards and the

console may be switched (in software) to communicate with any of the six shells.

Tasks may be invoked on any operating system and migrated between operating

systems transparently to the user. Figure 2 gives an overview of the Testbed

system software.

Some small utility programs have been implemented on the Testbed o�ering

similar features to the Unix programs more, grep, compress and wc. A disas-

sembler and a version of the editor ue have also been ported. However, as no

compiler has been implemented, all new programs must be cross-compiled on

another machine and then up-loaded to the Testbed via the LAN connection. A

typical experimental session might be as follows: edit and compile the test program

on a Unix workstation; up-load the binary to the Testbed; execute the program on

the Testbed collecting the results in a �le; down-load the �le to the workstation;

and analyse and display the results with, for example, perl and gnuplot.
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2.1.1 The parallel processor boards

Each processor board has a Motorola 68010 processor, several megabytes of RAM,

support for virtual memory, a Centrenet controller (including a Direct Memory

Access capability) and a connection to the monitoring bus. The board designated

as `master' also has drivers for two serial links and reads event data from the

monitoring bus|the other, `slave' boards may only write to the bus. Section 2.2.4

describes the monitoring bus and its interfaces in more detail.

The number of processors and their 1.2 MIPS performance put the Test-

bed in the MIMD, medium granularity class, somewhere between the Cray-XMP

approach, which uses a small number of very high performance processors, and

the DAP approach, which uses a large number of simple processors. The Testbed

is designed as a message-passing architecture rather than a shared memory archi-

tecture for several reasons. The occam model of programming had already been

selected (for reasons explained below in Section 2.1.3) and it explicitly communic-

ates sequences of bytes over channels and only shares variables if they are read but

not written. The interconnection network required for message passing is generally

simpler to implement (and more scalable) than that required for shared memory

since global memory updates are avoided.

The Centrenet interconnection network has a hierarchical design: nodes, which

comprise up to sixteen processors sharing a bus, are connected by �bre optic

cable into a tree. Communication time is minimal if the source and destina-

tion processors are part of the same node; otherwise the communication time is

proportional to the number of nodes traversed. Since the Testbed has just six

processors, its communication network requires only a single Centrenet node. The

communication speed is approximately 10Mbytes/second. The Testbed architec-

ture is scalable (with a reasonable performance penalty as more nodes are added

to the tree) but in this report all experiments use the simplifying assumption that

Testbed inter-processor communication requires at most one hop.

2.1.2 The Testbed operating system

The description of TOS support for load balancing is deferred until Section 2.2.

Here, TOS and its built-in shell are considered in terms of the more conventional

operating system features supported.

Each replication of TOS on each processor may host up to sixteen processes

at any one time. In this context, a `process' is created every time a new program

is invoked by the user. Each process has a code and a data segment of up to half

a megabyte. Strict rules prevent one process from modifying the data of another

process, although multiple invocations of the same program may share a code

segment and trusted programs (such as debuggers) may have read-only access to

other processes' memory. Processes may be marked as `foreground', `background'

or `suspended' (for debugging purposes). The command ps lists the processes,

their `threads' (described next) and optionally the thread contexts, kill may be
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used to remove processes and fg and bg move processes between the foreground

and background.

In TOS terminology, it is not processes which execute but `threads'. Each

thread has its own program counter and stack but shares code and global data

with the other threads in the same process. Each process may own up to sixty-four

threads, the threads being multi-tasked on an equal priority, round-robin basis.

Threads have a maximum time-slice of 20ms, although they may be pre-empted

if they call certain operating system services. TOS has been made pre-emptive so

that interactive programs will operate correctly, but the time-slice has been set

relatively high in order to reduce the number of context switches. This is necessary

because the context switch takes a long time, as much as �fty times as long as a

Transputer context switch. Threads communicate over occam-style channels (as

described in Section 2.1.3) and each process may own up to 128 channels.

The Testbed does not have backing store on which to keep parts of the virtual

memory that have been `paged out' so Testbed programs must be conservative

in their use of memory. Practical experience, however, shows that the available

RAM is almost always su�cient.

Each replication of TOS maintains its own �lestore in local memory. The

�lestore is e�ectively a one-level directory and holds program �les, scripts, data

�les and con�guration �les. Up to sixty-four �les are allowed, a maximum size of

half a megabyte per �le being imposed. Files may be copied between processor

boards by the user (versions of the Unix commands ls, cp, rm and mv are available)

and executables are automatically mounted as needed. File permissions may be

set with chmod to specify execute, read or write.

Other assorted features include a real-time clock, simple script interpretation,

a form of environment variables, redirection of stdout and some terminal control

via stty.

2.1.3 Programming environment

Programs to be executed on the Testbed are written in C, compiled and linked

with Testbed-speci�c libraries. Most of these libraries are implementations of the

standard C library functions described in Kernighan and Ritchie [18, Appendix B]

and the rest are new extensions to the C programming language to allow control of

multiple threads and channel communication. Here is a summary of the standard

functions available on the Testbed.

� The stdio functions for opening, ushing, closing, seeking and unlinking

�les, formatted printing (fprintf), character reading and writing, block

reading and writing.

� The string functions for copying, concatenating, comparing and searching

strings and memory block copying.
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� Some of the stdlib functions for string-to-integer conversion, memory alloc-

ation, exit and environment variable search operations.

� Some of the time functions for reading the real time clock.

The ctype, assert, stdarg, setjmp, signal, limits, float and math functions

have not been implemented.

The thread model. The �rst area in which new extensions to the C program-

ming language have been made is that of thread control. Thread control is based

on the simple yet powerful process model of occam, as embodied by the PAR

statement: a parent spawns a number of children and is blocked until the chil-

dren complete. Details of the occam language can be found in Pountain [32] and

INMOS [22] and a discussion of the unique bene�ts of occam in Welch [36]. Thread

control is an operating system function, accessed by means of the following library

routines:

int create(id, n pages, processor, entry, stack) A child thread with ID

number derived from id is created; the child is allocated n pages of stack

space; its initial program counter and stack pointer are loaded from entry

and stack; the child is queued for execution on the processor board speci�ed

by processor or chosen randomly if processor has a negative value. The

value returned by create is zero if the child cannot be created, otherwise

the ID number of the child.

wait Once the parent has called create for each new child, it calls the wait

function and is suspended until its children have terminated.

exit(err) Threads terminate by calling the exit routine and passing an error

code. Two of these codes are reserved for the occam HALT and STOP condi-

tions.

occam is a static language in terms of process creation and channel comm-

unication. In occam the identity of all processes and channels can be known

at compile time. This has the advantage for architectures without large virtual

address spaces (such as the Transputer) that all memory requirements are known

before the program is executed and memory can be allocated statically. Fully

dynamic process creation is possible on the Testbed but passing the thread id

value is more in keeping with the occam philosophy and simpli�es the use of

debugging programs, such as that designed by Woods [37].

The communication model. The second area in which new extensions to the

C programming language have been made is that of inter-thread communication.

The model of communication is based on occam: a pair of threads wishing to

communicate reserve (for the entire program execution) a unique, unidirectional
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channel. One thread performs send operations on the channel, the other receive

operations. Both threads are blocked while communication completes.

Communication on the Testbed is implemented in the operating system and

accessed through the following library routines:

send block(chan, buffer, length) A thread requests to send a message of

length bytes beginning at the address given by buffer on channel chan.

int receive(chan, buffer, length) A thread requests to receive at most

length bytes of data beginning at the address given by buffer on chan-

nel chan. The return value speci�es the actual number of bytes received.

2.2 Support for Load Balancing

In addition to the functionality of conventional parallel computers, the Testbed

o�ers task migration and load balancing. These advanced features require exten-

sions to all parts of the Testbed: special operating system data structures for

representing tasks; protocols for migrating tasks and their resources; instrument-

ation of the software; and dedicated hardware to enable the collection of events.

The extensions made in each of these areas are described below.

2.2.1 Special data structures

The unit of migration on the Testbed is the thread. To make the migration of

a thread t from source processor sp to destination processor dp as e�cient as

possible it must be easy to `disconnect' the data structure that represents t from

its environment at sp, pack t into a message and transmit the message to dp.

At dp, the reverse process of unpacking and reconnecting t must also be made

simple. Migration is complicated by the fact that threads use local resources,

such as communication channels and pages of memory, and for transparent thread

migration these must be moved or copied in a consistent way.

Experience with the Testbed shows that in addition to the usual consider-

ations when designing data structures|i.e. minimal size, simplicity for ease of

implementation and maintenance, and e�ciency of access|the data structures

used in TOS to represent threads and their resources must have the following

properties.

1. All the relevant data structures must be kept near each other, both to assist

allocation and release, and in order that they may be located speedily during

migration.

2. The number of dependencies or links between data structures must be

minimised to speed and simplify `disconnection' and `reconnection'. Data

structures such as doubly-linked lists are necessary.
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Channel Control Blocks

Ready Queue of Thread Control Blocks

Ready Queue of Thread Control Blocks

Channel Control Blocks

Figure 3: A processor with two executing processes and a migrating thread

waiting for transmission.

In TOS, a single record called the Thread Control Block (TCB) is used to

represent a thread. Unused TCBs are stored on a free list and allocated when a

thread is created or arrives during migration from another processor. TCBs are

destroyed when a thread terminates or when it is migrated away. When a thread

is to be migrated, the information to be transmitted is localised in three areas: the

TCB which holds register context and other control values; the Channel Control

Blocks (CCBs) which store the status of channels used by the thread; and the

virtual memory page table which stores information on memory pages owned or

shared by the thread. The `disconnection' of a thread simply requires that it be

unlinked from the process ready queue.

An example migration is illustrated in Figure 3. On one of the Testbed

processors two processes are executing. Each process has a virtual memory page

table, an array of CCBs and a doubly-linked list of ready threads. In addition, a

message containing a migrating thread awaits transmission. This message contains

the TCB and copies of the relevant CCBs and memory page table entries.
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2.2.2 Migration protocols

The migration protocols de�ne the rules for moving and copying threads, memory

pages and channel information between processors. These rules are needed

to ensure migration transparency and to prevent, for example, the creation of

multiple copies of a thread occurring, updates to the same memory page at di�er-

ent sites happening or the loss of messages on channels used by a migrating thread.

The migration protocols are complicated, principally because they have to

deal with concurrent interactions between multiple processors, and their design

was greatly assisted by the development of the formal speci�cation described in

the companion report Martin [26]. In fact, several major alterations to the initial

implementation were made when the speci�cation showed that problems might

arise in certain unusual sets of circumstances.

Any thread may be migrated as many times as desired, it is possible for several

migrations to occur at the same time and no destination processor may refuse to

accept a migrating thread. However, a source processor can refuse to send a thread

if the thread is in the wrong state. Threads may be in only one state at a time

and examples of possible states are: in the ready queue, waiting to communicate,

waiting for a page of virtual memory or, indeed, in the act of being migrated.

The TOS protocol states that only threads currently in the ready queue may be

migrated. Without this restriction, di�erent `disconnection' (and `reconnection')

procedures would be needed for threads in each state. The motivation for distin-

guishing the ready state is that ready threads are the most likely to consume

valuable system resources in the near future, and hence are likely to be good

candidates for migration.

The protocol for moving and copying pages of memory between processors is

too complicated to state in full here, although the following demands are placed

upon the protocol. For e�ciency reasons, pages from the read-only code segment

of a process may be freely copied around the system whenever a migrating thread

requires them. Following the semantics of occam, if a parent thread pt creates a

child thread ct then ctmay read (but not modify) variables in pt's stack area|such

pages are copied if necessary. Pages holding the stack area of a thread that has

just migrated may be copied if the thread uses them again. Finally, the memory

page protocol also has to know when to ush out-of-date copies of pages.

The third protocol, for communication, is the most complicated of all. For

e�ciency reasons, CCBs are distributed and changes due to thread migration

are not made globally|much care was taken in protocol design to ensure that

all copies of a process' CCBs stay in a consistent state. Without presenting the

complete protocol here, the following remarks are made. Suppose that threads t

1

and t

2

communicate over channel c. When they are on the same processor then a

single CCB is used to represent c. When they are on di�erent processors then two

CCBs are needed. If t

1

migrates away from t

2

then information must be extracted

from the shared CCB and used to create a new CCB. If t

1

migrates onto the same

processor as t

2

then the information from two CCBs needs to be combined in a
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shared CCB.

2.2.3 Software instrumentation

The Testbed uses dedicated hardware to implement hybrid monitoring and to

provide a global clock for time-stamping monitoring events. Hardware assistance

helps limit intrusion by reducing the overheads of collecting load data.

There are several options for where to apply software instrumentation. The

simplest method is to add instructions to the user's program|either manually or

using a modi�ed compiler|or to generate an instrumented version of the shared

library routines. The Testbed, however, is instrumented by adding instructions

to the operating system because the events that are needed for the pro�ling in

Section 3 and for the load balancing in Section 4 involve information which is

known only to the operating system. Furthermore, care is taken to use only

information that is readily available in the processor registers or local stack frame

and to avoid expensive computation.

Less than 1.5% (approximately 150 lines of code) of the 11,000 lines of code

in TOS are concerned with generating events. This is comparable with the 1%

slowdown in the TOPSYS project (described by Bemmerl et al [4] and Bemmerl

and Bode [2]) although it is rather more that the 0.1% claimed for the TMP

monitor (Haban and Wybranietz [13] and Haban and Shin [12]). Detailed results

about the exact number of events produced can be found in Section 3.3.7.

The extra C instructions are of two forms:

if (dgl&DIAG) f ... g

and

send event(n);

The �rst construct is used to test whether various classes of events are to be

emitted: the `diagnostic level' variable dgl is set by the user, & is the bit-wise

AND operator and the DIAG value is a string of bits corresponding to one or more

classes of events. The second construct causes a 16-bit event to be written to the

monitoring hardware. The �rst construct requires three machine instructions and

the second construct requires just one.

The events are grouped into classes which can be individually enabled|with all

�ve processors generating all classes of event the master processor becomes over-

whelmed with event data which it does not have su�cient time to process. The

di�erent classes have been chosen to support di�erent types of experiment. There

are event classes associated with load balancing, including events for changes in

ready queue length, threads being scheduled and descheduled and threads commu-

nicating; and event classes not associated with load balancing including events for

pro�ling TOS performance and debugging system or user code.

New events can be added to TOS as desired by the experimenter. Firstly, the

section of TOS code that is associated with the event is identi�ed. Secondly, an
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Event Sequence Description

[0xaann] Global clock overow

[TID+0x4000] Thread (with ID TID) is being scheduled

[CREATE+0x8000] [CTID] A child thread (CTID) is created

[TRAP70] A thread is being blocked on communication

Table 1: An example showing some variable length events used for pro�ling the

performance of the Testbed.

Event Sequence Description

[TID+0x4000] Thread joins ready queue

[TID] Thread is removed from ready queue

Table 2: An example showing some �xed length events used when measuring the

size of the ready queue.

existing or new class is selected for the event so that the event can be conveniently

enabled or disabled. Thirdly, a representation for the event as a sequence of 16-bit

numbers is determined so that the event and its associated information (such as

thread or channel IDs) can be reconstructed by the event collection software. It

is particularly important to ensure that the new event cannot be confused with

existing events in the same, or simultaneously enabled, classes. The convention

currently used for one of the larger classes is as follows.

1. All 16-bit numbers of the form 0xaann indicate that the monitoring hard-

ware's global clock has overowed (0x indicates that the following number

is in hexadecimal, n represents any hexadecimal digit).

2. All 16-bit numbers, other than those speci�ed above, with bit 14 set are

events indicating that a thread (with ID speci�ed in bits 13 to 0) is being

scheduled.

3. All 16-bit numbers, other than those speci�ed above, use bit 15 to indicate

whether they are followed by another number pertaining to the same event

or not. This allows complex events to be signalled by means of a variable

length sequence.

Another class of events uses the simpler convention that bit 15 set indicates a

global clock overow, otherwise bits 13-0 specify a thread ID and bit 14 speci�es

whether the thread is being added to the ready queue or removed from the ready

queue. Examples of event sequences from di�erent classes are presented in Tables 1

and 2.

2.2.4 Hardware for event collection

The Testbed's monitoring hardware comprises �ve Slave Monitoring Interfaces

(SMIs) and a Master Monitoring Interface (MMI). As shown in Figure 4 each of
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Figure 4: An overview of the Testbed monitoring hardware showing the master

monitoring interface and one of the slave monitoring interfaces.

the �ve slave processors can write sequences of 16-bit event data to an associated

SMI, addressing it as a memory mapped device. The SMIs add a 16-bit time-

stamp from the global clock to the 16-bit numbers as they arrive and then store

the time and data pairs in a 32-bit wide, 1024-entry queue.

The MMI polls each SMI in turn over the 16-bit wide monitoring bus and

collects (unless the SMI is empty) �rst the time-stamp and then the event data.

The time-stamps and data are stored by the MMI in a 20-bit wide, 512-entry

queue. Each entry has four bits specifying the source SMI.

The master processor may poll the MMI (treating it as a memory mapped

device) at any time, requesting data from its queue. This data is supplied as a

4-bit processor board number and 16-bits of time or event data. Software on the

master processor performs the task of re-uniting time-stamps and event data from

the same SMI and outputs a time-ordered sequence of events.

The purpose of the MMI and SMI bu�ers is to cope with bursts of high event

generation rates. If the burst lasts too long and the bu�ers �ll then events must

be discarded or the computation stopped.

The SMI boards have been designed with room for additional �ltering logic

to reduce event rates. The intention is that the logic will be programmed from

the master processor and that the type of �ltering applied can be changed during
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program execution as appropriate. This kind of �ltering has already been done on

the TMP and is described by Haban and Wybranietz [13] and Haban and Shin [12].

Di�erent kinds of �ltering are suggested in Mansouri-Samani and Sloman [25],

however, this additional functionality has not yet been implemented on the Test-

bed.

Load balancing software. Software for the reconnaissance and decision-

making phases of load balancing is discussed in Section 4. It is worth noting

at this point, however, that the design of the monitoring hardware requires load

measurements to be centralised at the master processor board. For all practical

experiments described in this report it has, in fact, proved convenient to use the

master board exclusively for reconnaissance and decision-making and to ensure

that the test programs execute only on the slave processors. While this decreases

the Testbed's parallelism from six to �ve, it ensures that intrusion caused by the

load balancer has minimal e�ect on the test programs.

3 Performance Pro�ling

This section describes a series of experiments in which the performance of the Test-

bed hardware and operating system is measured. The experiments are conducted

using the Testbed's own monitoring hardware, for although the monitor is mainly

intended for pro�ling user programs it is equally suitable for pro�ling hardware

and system software. The aim of the experiments is threefold.

1. To establish some basic parameters for use in load balancing: the cost of

local (intra-processor) communication, the cost of remote (inter-processor)

communication and the cost of thread migration.

2. To examine the e�ciency of the operating system's communication and

migration protocols. Each phase of the protocols is considered independ-

ently and assessed according to the average time it takes to complete.

3. To parameterise the Testbed. This will provide the basis for future work

on comparing the Testbed with other multicomputer systems and possibly

input for models or simulations of Testbed-like systems. Considering the

value of such parameterisations it is a pity that this kind of data is available

for so few computers.

The experiments are carried out by constructing a number of small test

programs, executing them on the Testbed and collecting their event traces from

the monitoring hardware. To ensure that the results are realistic, the experiments

are repeated several times with di�erent levels of background load. The experi-

mental data is subjected to a variety of analyses using a range of Unix tools and

the results are presented in graph form. A series of �nite state machines are also
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presented so that the results can be interpreted in terms of the formal speci�cation

presented in Martin [26].

The rest of this section is organised as follows: after a brief note on terminology

I list the experiments to be performed and give a short description of the test

programs used. I then present a model of execution for the main loop of TOS and

four �nite state machine models of execution for the communication and migration

protocols. The main part of this section concerns the experimental results and

their interpretation. Finally, some conclusions are presented.

Terminology. In the following sections it is necessary to distinguish occam

Channel Messages (OCMs) fromMessage Protocol Components (MPCs). OCMs

are communicated over channels by occam processes|they are typed sequences

of data to be shared. MPCs are operating system objects used to implement reli-

able communication of OCMs over Centrenet. All three kinds of MPC, the focus

token, the ready-to-receive indication (rtr) and the actual message data (msg) are

required to implement the communication of a single OCM.

1

3.1 The Experiments to be Performed

The experiments fall naturally into seven groups and are listed below in the same

order that their results are presented in Section 3.3.

1. The minimum time required to complete the local communication of an

OCM is measured for a range of message sizes.

2. The minimumtime required to complete each step in the protocol for remote

communication is measured for a range of message sizes. Remote communic-

ation is more complicated than local communication and each communic-

ation requires several di�erent operating system services and the transfer of

several di�erent MPCs over Centrenet.

3. The minimum time required to complete each step in the protocol for

thread migration. These times are independent of the particular thread

and processors involved.

1

Most remote channel communication, i.e. communications between threads on di�erent

processors, start with the sender's processor transmitting a focus token to the receiver's

processor to notify the receiving thread that the sender is waiting. When the receiving thread is

ready to communicate, an rtr is returned to the sender's processor causing the contents of the

channel message to be transmitted (in a message of type msg) and the sender thread restarted.

When the msg arrives, the data is copied into the receiver thread's memory area and the receiver

is restarted. The advert token is used only during the �rst communication over a channel when

the sender thread may have to advertise its presence to all processors in the system. Receiver

threads are more passive than sender threads|it is generally the responsibility of the sender to

locate the receiver when it wants to communicate.
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4. The minimum time required to complete each step in the protocol for the

transfer of memory pages between processors. This protocol is invoked

each time a migrated thread requires a page of memory resident on another

processor.

5. Up to this point, all experiments are performed on a quiet machine and

represent `best case' results. Now, the e�ects of a busy environment on local

and remote communication, thread migration and remote page copying are

examined.

6. The range of behaviours that might be expected from a `typical' user

program are measured.

7. The �nal group of experiments are somewhat di�erent in nature to the others

and involvemeasuring the maximumthroughput of the Testbed's monitoring

system itself.

3.1.1 The test programs

My experiments were performed using �ve small C programs: local, remote,

migrate, multi-phase, and overflow. Program listings in pseudocode are given

in Appendix A.

The local and remote programs each have two communicating threads.

During the execution of these programs, the size of the messages communic-

ated increases linearly from one byte to 5,000 bytes. The di�erence between the

programs is that local's threads reside on the same processor whilst remote's

threads execute in parallel on di�erent processors. I use these programs to study

the latency of di�erent phases in the communication protocols.

The third program, migrate, comprises two threads which communicate inter-

mittently over an occam channel. The �rst thread executes exclusively on one

processor whilst the second migrates to a di�erent processor after every comm-

unication. I use the migrate program to measure the latency of di�erent phases of

the migration protocol and to measure the time it takes to copy pages of memory.

Program four, multi-phase, comprises a number of threads which are distrib-

uted over the slave processors and which pass through a number of di�erent phases

to simulate a wide variety of dynamic behaviour.

Finally, the overflow program is used to measure the maximum throughput

of the event monitoring hardware. A single thread executes on one of the slave

processors and generates a large number of events. The program terminates after

a �xed time period or when the monitor's event bu�ers overow, whichever occurs

�rst.
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3.2 Execution Models

3.2.1 The TOS main loop

The main program loop of TOS is described in order to assist the interpretation of

the experimental results later on. After reset or power-up each Testbed processor

completes an initialisation sequence and then enters the main operating system

loop. This loop has four phases.

1. In the send phase the transmit queue is checked for outgoing messages. Any

messages found are passed to the Centrenet module for transmission.

2. During the receive phase the incoming message queue is checked to see

whether Centrenet has received any messages from other processors|if it

has then the new messages are processed.

3. The schedule phase involves scheduling the thread at the front of the ready

queue. This thread then has complete control of the CPU until it makes a

call to the operating system or until a timer interrupt signals the end of the

time-slice.

4. In the service phase the operating system performs the service requested by

the thread, assuming the thread was not pre-empted, and either returns the

user thread to the ready queue or blocks it on the appropriate resource.

The loop now repeats from phase 1. The timer interrupts, which may occur

during any phase, are used not just for pre-empting threads but for ensuring that

important housekeeping tasks, such as updating the real time system clock, are

performed regularly.

3.2.2 The communication and migration protocols

Several steps are required to obtain the experimental results. In the �rst step a test

program is executed on the Testbed. Then, the events are collected and sorted into

a single trace �le. In the �nal step a range of tools are used to analyse the trace

�le and to extract the appropriate times of interest. This section explains how the

last step is done by describing the relationship between the actions performed by

the operating system during communication, thread migration or page copying,

and the events found in the event trace.

To help with the explanation, four �nite states machines (FSMs) are presen-

ted: two for the local and remote communication protocols and one each for the

thread migration and page copying protocols. In these FSMs, vertices correspond

to operating system states and arcs correspond to the events emitted as the oper-

ating system moves from state to state. The FSMs are decorated with dashed

lines connecting the arcs and these lines are labelled with one of the phases of

the communication, migration or page copying protocol depicted by the machine.

Thus, the relationships between sequences of events and phases in the protocols are
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Figure 5: The FSM for local communication.

made explicit. The FSMs also have a direct interpretation in terms of the formal

speci�cation of the operating system and this is explained for each machine.

Local communication. Figure 5 shows how the local communication protocol

can be divided into four phases. The vertices and arcs are informally interpreted

as follows:

Vertex 1: Initially, no communication is in progress.

Vertex 2: The operating system has been called because a sender thread (or

alternatively a receiver thread) wishes to communicate. The TRAP7 event

signals the transition from user to system mode.

Vertex 3: The emission of the TRAP70 event signals that the operating system

has �nished servicing the thread's communication request and has blocked

the thread. Other user threads will now be executed.

Vertex 4: When the receiver thread (or alternatively the sender thread) also

requests to communicate another TRAP7 is emitted as the operating system

begins to service its request. Once the data has been copied from the sender

to the receiver a TRAP72 is emitted and vertex 1 is reentered.

Now consider the dashed arcs in the FSM which represent the di�erent phases

in the protocol. The durations of each phase, or times of interest, are:

Time to service the sender's (receiver's) request: this is the time that the

operating system spends processing the �rst thread's request.

Time to service the receiver's (sender's) request: the time the operating system

spends processing the second thread's request, including the time to copy the

message from the sender's memory area to the receiver's memory area.

Total communication time: this is the time between the �rst communication

request and both threads being released back into the ready queue after a success-

ful communication.

There is also a correspondence between transitions in the FSM and the applica-

tion of the speci�cation schemas. Assuming that the sender thread communicates
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Figure 6: The FSM for remote communication.

�rst, the transition from vertex 1 via vertex 2 to vertex 3 is modelled by the applic-

ation of the FSend schema and the transition from vertex 3 via vertex 4 to vertex

1 is modelled by FReceive. Alternatively, assuming that the receiver communic-

ates �rst, the transition from vertex 1 to vertex 3 is modelled by FReceive and

the transition from vertex 3 back to vertex 1 by FSend.

Remote communication. The protocol for remote communication has more

phases and so the FSM presented in Figure 6 is more complicated than the previous

FSM. The upper half of the FSM (vertices 1 to 4) depicts state transitions of the

processor on which the sender thread is executing. The lower half of the FSM

(vertices 5 to 13) show what happens at the receiver's processor. The dashed

lines between the two halves correspond to Centrenet messages being exchanged

between the two processors.

I will not describe the numbered vertices this time. Refer instead to Table 3

for an interpretation of the events. The times of interest indicated by the dashed

lines in the FSM are described as follows:

Sndr rq comms: (arc 1/2 to arc 2/3) this is the time the operating system

spent servicing the sender's request to communicate.

Rcvr rq comms: (arc 5/6 to 6/7 and 12/13 to 13/9) the time the operating

system spent servicing the receiver's request to communicate.
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Event Interpretation

TRAP7 Thread requests to communicate

TRAP70 Thread is blocked after request has been serviced

RX MPC Begin servicing an MPC (Message Protocol Component)

RX FOCUS MPC received was a focus token

COMMS Sender is returned to ready queue

COMMR Receiver is returned to ready queue

Table 3: Events emitted during the remote communication protocol.

Transition Schema Transition Schema

1 via 2 to 3 FSend 7 via 8 to 9 FFocus

5 via 6 to 7 FReceive 3 via 4 to 1 FRtr

12 via 13 to 9 FReceive 9 via 10 to 5 FMsg

5 via 11 to 12 FFocus

Table 4: Correspondence between state transitions in the FSM for remote

communication and the speci�cation schemas.

FOCUS ight: (arc 2/3 to 5/11 or 7/8) the time between the sender's processor

�nishing with the sender's request and the receiver's processor beginning to deal

with an incoming focus.

RTR ight: (arc 8/9 or 13/9 to 3/4) the time from the receiver's processor

having both a focus token and a waiting receiver, to the sender's processor begin-

ning to deal with the incoming rtr.

MSG ight: (arc 4/1 to 9/10) the time from the sender's processor �nishing

with an incoming rtr to the receiver's processor beginning to deal with an incoming

msg.

FOCUS service: (arc 7/8 to 8/9 or 5/11 to 11/12) the time taken to service a

focus token, including the time to generate an rtr message if appropriate.

RTR service: (arc 3/4 to 4/1) the time taken to service an rtr indication,

including the time to package up a msg (this involves copying the message data)

and return the sender to the ready queue.

MSG service: (arc 9/10 to 10/5) the time taken to unpack message data from

the Centrenet bu�ers and release the receiver back into the ready queue.

When the Testbed executes an operating system service as part of the remote

communication protocol, it emits one event before beginning the service and

another event after �nishing the service. Since each such service is modelled

by a speci�cation schema, and since the FSM for remote communication has one

transition per event, it follows that each speci�cation schema corresponds to a

pair of FSM transitions. These correspondences are shown in Table 4.

Thread migration. Figure 7 shows the protocol for thread migration. The

times of interest are:
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Figure 7: The FSM for thread migration.

Packing time: the time spent by the operating system locating the thread to

be migrated, removing it from the ready queue, packing its context, channel and

memory page information into a Centrenet message and deleting the local copy of

the thread's context.

Thread ight time: this is the time between the sender processor queuing the

packed thread for transmission and the receiver processor starting to process the

incoming thread message.

Unpacking time: the time taken for a receiver processor to unpack the thread

context, update the channel and memory page tables and prepare the thread for

execution.

The correspondence between transitions in the FSM and the application of

the speci�cation schemas are as follows: the FSM transition from 1 via 2 to 3 is

modelled by theMDisconnect schema; the transition from 3 via 4 to 1 is modelled

by MConnect.

Copying remote pages. Figure 8 shows the protocol for copying remote pages.

The times of interest are:

Process bus error: the time for the operating system to service the bus error,

locate the missing page, submit a remote page request to Centrenet and block the

faulting thread.

Page request ight time: this is the time between one processor blocking a

thread on a page and another processor starting to process the page request.

Page ight time: the time for the missing page to be located, packed into a

message, transferred over Centrenet and the blocked thread restarted.

The formal speci�cation does not model the copying of pages between

processors so there are no schemas relating to this FSM.
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3.3 Results of the Experiments

3.3.1 Latency of local communication

Figure 9 shows the time TOS spends servicing the sender thread's request to

communicate. One hundred di�erent message lengths are tried and each message

length is sent several times. In this experiment the receiver always blocks before

the sender, so copying of the message from the sender's memory area to the

receiver's memory area occurs during the servicing of the sender's request. This

is why the service time increases almost linearly with the message length.

For most message lengths the times measured fall into two groups|hence the

double-line e�ect|the longer times occurring when the operating system service

is interrupted by the system timer. When the data is `corrected' by subtracting

time spent servicing the timer interrupt, Figure 10 is produced. This new �gure

shows an otherwise linear graph superimposed with a step function. A detailed

investigation of the relevant operating system routines shows that these steps occur

when the message copying function has to cross the boundary between consecutive

pages in the sender's memory area or the receiver's memory area, and indeed the

graph shows pairs of steps occurring at intervals of 1024 bytes, the size of a memory

page.

Figure 10 also shows the time that the Testbed operating system spends servi-

cing the receiver thread's requests to communicate. As mentioned above, the

receiver always requests communication �rst, there is no message copy involved,

and thus servicing the request takes constant time.

It is a stated aim of these experiments to examine the e�ciency of the oper-

ating system's communication protocols. I observe that the time to service a

communication request is either constant or linear with messages size and there-

fore at most a constant factor of improvement could be made to the operating

system e�ciency.
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Figure 9: Time taken to service a local send request, copy the message to the

waiting receiver's memory area and restart both threads.
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Figure 10: Upper graph: time taken to service a local send request corrected

by subtracting time spent servicing timer interrupts. Lower graph: time taken to

service a receive request and block thread.
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Figure 11: Upper graph: time taken to service a send request over a remote

channel. Lower graph: time taken to service a receive request over a remote

channel.

3.3.2 Latency of remote communication

Figure 11 shows how long TOS spent servicing remote communication requests

made by user threads. These requests are broken down into two types: requests

made by sender threads and requests made by receivers. In the experiment, �fty

di�erent message sizes were tried, but each size was sent only once so the timer

interrupts cause just two upward blips rather than the line-doubling e�ect seen

before. With the small scale of this graph, it is now possible to see that the extra

delay introduced by a timer interrupt is approximately 0.25ms.

The time to service a remote send or receive request is constant for all OCM

lengths at about 1.2ms for sends and 0.45ms for receives. This is because no

copying of the message occurs during this phase of the remote communication

protocol. As the service times are constant with message length it is seen that

again, the operating system e�ciency can be improved by, at most, a constant

factor.

Servicing MPC messages. Figure 12 shows how long TOS spent servicing

three of the di�erent kinds of MPC involved in implementing the occam channel

protocol: focus, rtr and msg (advertMPCs are ignored). These graphs also have

timer interrupt blips, although because of the scale these are less easy to see.

Servicing a focus is simply a matter of returning an rtr message to indic-

ate that the receiver is ready, hence the zero gradient. Servicing an rtr involves
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Figure 12: Upper graph: time for the operating system to service an incoming

rtr message. Middle graph: time to service a msg message. Lower graph: time

to service a focus message.

packing up the OCM data to be sent so the time increases with OCM length. Like-

wise, servicing a msg involves unpacking the OCM data and the time is therefore

proportional to the OCM length. This copying of the message twice is unavoidable

on the current Testbed hardware. The rtr and msg graphs are di�erent because

they are implemented using di�erent routines in the operating system.

Once again, all graphs are linear or constant.

Flight times. Figure 13 shows how long focus, rtr and msg MPCs spend `in

ight'. Notionally, the ight time is the time spent by the MPC ying (with

Centrenet's help) from one processor to another but, as will be seen shortly, other

factors may contribute signi�cantly to the ight time. Considering the ight times

for focus and rtr messages �rst, these are fairly constant at around 1.5ms. This

is expected since focus and rtr MPCs always comprise six bytes, regardless of

OCM length.

The msg graph appears at �rst to suggest that some interesting interactions

are occurring in the experiment. However, the curious behaviour is actually caused

by a quite harmless relationship between the time at which the rtr message arrives

and the time the subsequently-released sender computes before being preempted

by the timer interrupt.

1. The time at which the rtr message is delivered to the sender's processor is

essentially asynchronous with that processor's activity.
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Figure 13: Upper graph: the ight time for a msg being sent over Centrenet.

Centre graph: rtr ight time. Lower graph: focus ight time.

2. With reference to Section 3.2.1, the rtr is processed during the receive phase,

a msg is queued for transmission and the sender is restarted after a constant

delay. In all likelihood, the Centrenet transmission hardware will be idle and

the msg will remain queued while the schedule phase occurs.

3. Any time up to 20ms later, the timer will interrupt and the sender thread,

which in this experiment is compute-bound, will be preempted. The

Centrenet transmission hardware will be restarted in the following send

phase and at last the msg will commence its ight.

Figure 14 summaries the situation: the upper graph shows the variability (of

up to one 20ms time-slice) in the delay between steps 2 and 3 above; the lower

graph shows that the pure msg ight time is much more predictable|in fact it is

linear with the message size. Hence, in this experiment, the observed behaviour

is determined, quite innocently, by the delay between the transmission of the rtr

and the next timer interrupt on the sender's processor.

Time for a complete remote communication. The total delays experienced

by the sending and receiving threads are shown in Figure 15. These times are

derived from the preceding graphs and show the minimum time that a sender or

receiver will be delayed on a quiet machine waiting for remote communication to

complete. The variation in the receiver delay stems from the variation in the msg

ight time, explained above.
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Figure 14: Upper graph: the time between the operating system queuing the

msg for transmission and the transmit queue being submitted to Centrenet. Lower

graph: pure ight time, i.e. the di�erence between the msg ight time as shown

in previous �gure and the upper graph.
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Figure 15: Upper graph: the total time by which the receiver is delayed during

communication. Lower graph: the total time by which the sender is delayed.
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Figure 16: Upper graph: time spent by operating system packing thread context

into a Centrenet message bu�er. Lower two graphs: ight time for thread message

superimposed on the time spent by receiving operating system unpacking thread.

3.3.3 Thread migration latency

In this section the latencies associated with thread migration are measured.

Figure 16 shows that the time spent packing a thread and its channel and memory

page information into a Centrenet message is constant at around 3.4ms and that

the ight time and unpacking time are virtually the same as each other at approx-

imately 2.5ms. As usual, the data is disturbed by 0.25ms blips caused by timer

interrupts.

3.3.4 Remote page copy latency

In addition to the packing, ight and unpacking latencies associated with thread

migration, further costs are incurred each time the migrated thread faults on a

remote memory page. The costs of copying a page of memory between processors

are shown in Figure 17.

The time delay between a user thread faulting on a page and the page request

being sent over Centrenet is constant at around 2ms. Page requests are queued

for transmission during the operating system's service phase. This phase is closely

followed by the send phase, so page requests are transmitted by Centrenet fairly

promptly.

The page request ight time is more variable because page requests may

be delivered at any point in the operating system's main loop and will not be
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Figure 17: Upper graph: ight time for a page being copied between processors.

Middle graph: ight time for a page request. Lower graph: time between a user

thread faulting on a page and the transmission of the page request over Centrenet.

processed (and the appropriate page queued) until the operating system has

reached the receive phase.

The page ight time is the most variable of all because pages queued for trans-

mission in the receive phase may very well not be sent until the next send phase

and the time required for the intervening schedule phase may be as much as a

time-slice. Additionally, when the page arrives at the requesting site some time

may elapse before it is processed.

The page ight latency can be compared with the time required to send a

1K message by remote communication. The operation of locating a page and

packing it into a Centrenet message is similar to the operation of servicing an rtr

message, roughly 4.5ms according to Figure 12. The `pure' ight time for a remote

page corresponds to the pure ight time for a message and is approximately 3ms

(Figure 14). The reception and unpacking of a page corresponds to the processing

of a msg, which takes about 3.5ms according to Figure 12. Thus, the total time

required for these three stages of the remote communication protocol is 11ms,

which is close to the average page ight time of 12ms.

3.3.5 The e�ects of a busy environment

This section describes how the times produced in the foregoing experiments are

a�ected when the Testbed is executing background programs which compete for
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CPU cycles and Centrenet bandwidth.

Local communication. The time taken to service requests for local comm-

unication is not a�ected by increased background loading because the operating

system cannot be preempted by user threads|Figure 9 is still an accurate repres-

entation. Similarly, local communication does not make any use of Centrenet and

is therefore una�ected by increases in Centrenet tra�c.

The total delay, however, as experienced by the �rst partner in any particular

local communication, may be increased. This happens when other threads are

scheduled after the �rst partner requests to communicate and before the second

partner requests to communicate. The size of the delay depends on how many

intervening threads are scheduled and the total number of CPU cycles that they

consume.

The �rst partner in the communication will su�er additional delays because

the amount of housekeeping that the operating system has to perform generally

increases with the load.

Remote communication. While the times to service communication requests

and to process MPCs remain unchanged, the latencies of all other remote comm-

unication actions increase with background load. Threads which compete for

CPU cycles extend the time between communication requests from the �rst and

second communicating partners. Threads which compete for communication band-

width extend the MPC ight times. If both processors hosting the communicating

threads are compute bound, MPCs which arrive during the schedule phase may

be held up for an additional time-slice (plus the service phase). In the worst case,

since each OCM requires three MPCs, the remote communication protocol may

be extended by more than three time-slices.

Thread migration and remote page copying. In the worst case, unpacking

of a migrating thread which arrives during the schedule phase may be delayed by

a time-slice plus the time required for the service phase plus the time required

to process other outstanding Centrenet messages. When the background load is

high, the new thread will also spend longer waiting for remote memory pages to

be delivered.

3.3.6 Typical communication latencies

The experiments so far have measured the best case latencies for local and remote

communication, thread migration and remote page copying. The qualitative e�ects

of increasing the background load have also been discussed. In this section, a test

program called multi-phase is executed to explore the range of typical communic-

ation latencies that might be experienced by a user program. The test program

has eight distinct phases (Table 5) to simulate compute and communication bound
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1: compute-bound local comms short messages

2: " " long messages

3: " remote comms short messages

4: " " long messages

5: communication-bound local comms short messages

6: " " long messages

7: " remote comms short messages

8: " " long messages

Table 5: Phases of the multi-phase test program.
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Figure 18: Mapping of threads to processors and channels to pairs of threads

in the multi-phase test program. The bold arrows represent channels for remote

communication, the normal arrows represent channels for local communication.

programs, programs with di�erent balances of local and remote communication

and programs with di�erent average message sizes. While multi-phase is not

intended to model any particular parallel program, it does model the extremes of

behaviour possible that bound the `typical' case.

The multi-phase program is listed in Appendix A and Figure 18 shows how

threads are allocated to processors and the pattern of channels between threads.

Note that the �ve slave processors are also know by the names earth, air, fire,

water and space. Thread 1 controls the transition between phases by using barrier

synchronisation as follows.
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Figure 19: Length of the ready queue on each of the �ve slave processors during

an execution of the multi-phase program.

� Threads 10 to 14 require two communications on channels 0 to 4 before a

remote communication phase can start using the `horizontal' channels.

� Threads 10, 20, 30, 40 and 50 require two communications on channels 5 to

9 before a local communication phase can start using the `vertical' channels.

� Thread 1 computes for a second between pairs of communications, thus

ensuring that one second elapses between the end of each phase and the

beginning of the next.

The e�ect of the phases on the ready queue lengths of the �ve slave processors

can be seen in Figure 19. During each phase, the relative amounts of computation

and communication govern the areas under the curves. Between phases (around

3, 5:5, 8, 11, 13, 15 and 18:5 seconds from the beginning of the execution) only

the thread with ID 1 is executing.

The e�ect of the phases can also be seen in terms of the frequency with which

local or remote communications are requested (Figure 20). The �rst four phases

are predominantly compute-bound so the communication frequency is low. Of the

communication-bound phases, 5 and 6 involve low-delay local communication and

so have the highest frequency. The same number of communication requests are

made in the last four phases, but since remote communication takes longer the

phases are longer and the frequency is lower.

The communication latency for senders during each phase of the test program

is shown in Figure 21 (it is assumed that the receiver latencies are similar). The
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Figure 20: Number of send requests per 50ms during the program execution.
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Figure 21: Time to service a send request during the program execution.

34



0

5

10

15

20

25

30

35

40

45

50

0 30 60 90 120

nu
m

be
r 

of
 s

en
d 

re
qu

es
ts

time to service send request (ms) (95%)

Figure 22: The dashed lines (there are only three, between 0ms and 3ms) show

the distribution of (local) communication latencies during phase 6 of the test

program multi-phase. The un-dashed lines show 95% of the distribution of

(remote) communication latencies during phase 8 of the test program.
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Figure 23: The event collection and processing pathways.

latencies are obviously longer in the remote communication phases as compared

to the local communication phases.

To achieve a greater level of detail, local communication phase 6 and remote

communication phase 8 are selected and the distribution of communication laten-

cies calculated, the results being shown in Figure 22. Note that in order to obtain

reasonable scaling factors the distribution for phase 6 actually goes o� the top of

the graph in one place and only 95% of the available data is shown for phase 8.

As might be expected, local communication is typically of low, predictable

latency (between 1ms and 3ms) while remote communication takes a longer and

much more variable time (between 10ms and 130ms).

3.3.7 Event rates

This section seeks to establish the maximum data rates that can be supported by

the monitoring system. While Imre [16] presents theoretical results, the experi-

ments in this section demonstrate that the monitoring system su�ers a bottleneck

which reduces the maximum data rates dramatically. Figure 23 shows the path-

ways along which monitoring events ow and the components that process events.

Events are generated by the �ve slave processors, collected and bu�ered by the

dedicated monitoring hardware and delivered to the master processor. Software

executing on the master processor interprets the events and either logs them to

a �le for later analysis or, when load balancing is enabled, forms an assessment

of the load, identi�es imbalances and issues migration instructions to the slave

processors.
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As indicated in Section 2.2.3, approximately 1.5% of the operating system is

instrumented with event generating instructions. As the Slave Monitoring Inter-

faces (SMIs) are capable of handling at least one event every two processor clock

cycles, the slave processor to SMI interface cannot be a bottleneck.

The Master Monitoring Interface (MMI) collects one event time-stamp and

data pair from each SMI every 36�s. If the performance of each slave processor is

1.2 MIPS and 1.5% of its instructions generate events then each slave can produce

18,000 events per second. Since the MMI can absorb about 28,000 events per SMI

per second the SMI to MMI interface cannot be a bottleneck.

The rate at which the master processor reads events from the MMI is slightly

more di�cult to determine. However, the minimum set of activities that would

have to be performed by a logger or load balancing program includes:

1. Polling the memory mapped hardware until a valid SMI number is returned,

then reading the event time-stamp or data value.

2. Selecting and updating the appropriate data structures according to the

number of the SMI and whether the value read was a time-stamp or event

data.

3. In the case that both the time-stamp and event data are now available for

a given SMI, carrying out some action such as logging the event to a �le or

checking for a load imbalance.

Obviously, the amount of work done by the master when it reads an event from the

MMI is orders of magnitude greater than the single machine instruction required

by a slave to generate an event. The monitoring bottleneck is, therefore, located

in the MMI to master processor interface.

The test program overflow (listed in Appendix A) is used to quantify the

master processor's sustainable event rate. The program executes on a slave

processor and causes events to be emitted at a rate set by the experimenter. A

simple logger program executes on the master processor, collecting the events as

they are generated. The test program is executed several times to �nd the event

rate at which the monitoring hardware overows and events are lost.

� In one experiment the test program was executed for 30,012ms without losing

any events. Analysis of the event trace showed that 33900 time-stamp and

event data pairs were collected. Therefore, on average the program had

emitted 1129 pairs per second.

� In another experiment the test program was executed for 21,508ms after

which events were lost because the monitoring hardware bu�ers were full.

Analysis of the event trace showed that 33903 time-stamp and event data

pairs were collected, showing that on average the program had emitted 1146

pairs per second.
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The conclusion is that the logger program has a sustainable event rate of just

over 1100 time-stamp and event data pairs per second, or 220 pairs per slave per

second.

The Testbed's sustainable event rate is about one �fth of NETMON-II's

(described by Zitterbart [38]) and about one tenth of the TMP's (Haban and

Wybranietz [13] and Haban and Shin [12]). However, whereas the Testbed has

one monitoring processor for all the slave processors, NETMON-II and TMP have

one monitoring processor for each slave processor. The Testbed is also slowed

down by the fact that the MMI delivers an interleaved stream of events from

di�erent SMIs|separating these streams out and �nding a total time ordering of

events proves to be quite a time-consuming task.

3.4 Conclusions

The latencies measured for the main operating system services are summarised

in Table 6. The average best-case latency and bounds are given, along with the

number of the �gure in which average and bounds are depicted graphically. It

should be noted that these accurate and detailed results could not have been

obtained without the Testbed's dedicated monitoring hardware and its global,

high-precision clock. Although few performance results are given in the literature,

and those that are given are not de�ned as precisely as those for the Testbed,

Table 7 shows how the Testbed's performance compares with some other concur-

rent computer systems'. (Charlotte is described by Artsy and Finkel [1] and Finkel

et al [10]. Emerald is described by Jul et al [17]. MMK is described by Bemmerl

et al [4] and Bemmerl and Bode [2]. Sprite is described by Douglis and Ouster-

hout [8].)

The presentation of the Testbed's operating system latencies satis�es two of

the three aims of this section|to establish some basic parameters for use in load

balancing and to enable future work simulating the Testbed or comparing it with

other multicomputers. The other aim stated at the beginning of this section was

to examine the e�ciency of TOS's communication and migration protocols. In

all cases, the communication latencies increase linearly with message size and the

migration and page copying latencies are constant. Thus, the only two ways of

reducing these latencies are:

� By optimising the software, e.g. through use of a better compiler or by hand-

coding in assembler.

� By upgrading the hardware, e.g. to use a faster clock or to enable Direct

Memory Access (DMA) in hardware to all areas of RAM rather than requir-

ing messages to be copied in and out of Centrenet bu�ers.

The formal speci�cation of the Testbed strongly suggests that the communication

protocols cannot be simpli�ed without compromising the transparency of process

migration.

38



Service Average time (ms) Bounds (ms) Figure

Local communication 1:95 � n+ 1:025 �0:275 24

Remote communication 2:77 � n+ 7:35 �0:35 25

Thread migration 8:4 �0:5 26

Remote page copy 16:9 +15:3 �3 27

Table 6: Summary of Testbed latencies for communication, migration and remote

paging services. (For communication, the latency is shown for the sender of an

n-Kbyte message).

Project Service Average time (ms)

Charlotte Local communication (1 byte) 10

" Remote communication (1 byte) 23

" Migrate process (32K) 240

Emerald Migrate process (600 bytes) 40

MMK Local communication (5K) 13

" Remote communication (5K) 56

Sprite Remote communication (5K) 10

" Migrate Unix process 300

Table 7: A selection of operating system latencies from other concurrent

computer projects.
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Figure 24: The graph showing the latency for a single local send is trapped

between lines y = 1:95 � 10

�3

� x+ 1:5 and y = 1:95 � 10

�3

� x+ 0:8.
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Figure 25: The graph showing the latency for a single remote send is trapped

between lines y = 2:77 � 10
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Figure 26: The graph showing the latency for thread migration is trapped

between lines y = 7:9 and y = 8:9.
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Figure 27: The graph showing the latency for remote page copy is trapped

between lines y = 13:9 and y = 32:2 with an average of 16:9.

4 Load Balancing

This section looks at the main issues in dynamic load balancing, describes the

system implemented on the Testbed and reviews its e�ectiveness. I begin by

proposing a characterisation of `balanced' load and, by means of a case study,

consider the best way of selecting a `load metric'. I give the rationale behind the

Testbed's strategy for load recon�guration, not relying on ad hoc assumptions

but making use of the results obtained in Section 3. Then I measure the speedups

obtained by balancing some typical parallel programs and, �nally, I draw some

general conclusions for the design of future dynamic load balancing systems.

4.1 Assessing the Load

As was described in the introduction, scheduling has three phases and the �rst,

reconnaissance phase involves assessing the load currently experienced by each

processor and forming this into a coherent summary for use in the second, decision-

making phase. In this section I propose an informal characterisation of what it

means for the Testbed's load to be balanced. This characterisation then guides

the selection of a suitable `coherent summary' which in turn suggests exactly what

aspects of the load need to be measured. The system components are shown in

Figure 28.
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Figure 28: The key agents in a dynamic load balancing system and the informa-

tion exchanged between them.
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1
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2
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1

while

communication-bound threads t

3

and t

4

execute on processor p

2

.

4.1.1 A characterisation for `balanced load'

Virtually all research to date has concentrated on making the best use of CPU

resources|indeed for most this has been the exclusive aim. Consider the example

depicted in Figure 29. If threads t

1

and t

2

are compute bound whilst t

3

and

t

4

spend most of their time communicating remotely, then processor p

2

may have

spare capacity while t

3

and t

4

wait for their message transfers to complete. A much

better arrangement is depicted in Figure 30 where the compute-bound threads will

absorb all spare processor capacity whilst the communication-bound threads su�er

at most by a delay of one time-slice per communication.
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Figure 30: One compute-bound and one communication-bound thread execute

on each processor.
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Figure 31: All threads spend roughly half their time computing and half their

time communication remotely over the network.

An example of load balancing to optimise processor resources can be found

in Bryant and Finkel [6]. They estimate the remaining execution time for each

candidate task, measure the response time for a notional average task on each

processor and assign the candidate job to the processor which will give it the most

appropriate service.

A small number of researchers have proposed that other system resources

should be taken into account when balancing the load. Messina [27] indicates that

memory subsystems are still very slow in comparison with processor speeds and

that therefore memory use should be measured|indeed it can be imagined that

a processor with `too many' di�erent user tasks may spend substantial amounts

of time dealing with page faults. Bemmerl et al [3] suggest that communication

latency is important and reason that user tasks will not be fully able to make use

of processor resources if they are held up waiting for messages to be transferred.

To illustrate this point, consider Figure 31. Suppose that t

1

is communicating

with t

3

and t

2

is communicating with t

4

: all threads su�er slow communication.

If two threads are migrated to achieve the situation in Figure 32 then all threads

are now communicating locally|a much better situation.

For the purposes of implementing a load balancer for the Testbed, I propose

that a balanced load occurs when no processor has a `great deal' more work in its
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Figure 32: All threads spend most of their time computing and a small propor-

tion communicating locally.

ready queue than the average and when no pair of processors communicates over

the interconnect a `great deal' more often than the average. Of course, quantify-

ing a `great deal' is not straightforward, as will be described later. This charac-

terisation allows me to explore the di�cult problem that occurs with particular

programs where reducing inter-processor communication increases the imbalance

in processor work and vice versa. Unfortunately, the simultaneous optimisation of

a larger set of resources is beyond the scope of this report.

This notion of a balanced load depends on an commonly-used assumption

which Casavant and Kuhl [7] summarise as, `: : : the philosophy that being fair to

the hardware resources of the system is good for the users of that system'. The

alternative to this philosophy is to seek to optimise each task|an attractive idea

but for two drawbacks. Firstly, it presupposes that what is best for the individual

task is best for all tasks collectively. Secondly, and more importantly with respect

to an implementation on the Testbed, optimising individual tasks requires a much

greater amount of monitoring data to be gathered.

4.1.2 Selection factors for load metrics

The next step is to select one or more load metrics which will generate the raw

data from which a coherent load summary can be produced. The characterisation

of a balanced load, as provided above, is necessary before this selection process

can proceed, but it is not su�cient. This section therefore reviews other selection

factors as suggested in the literature and, in a series of case studies, applies some

of these factors to four candidate load metrics.

Bearing in mind what Ni et al [28] have to say on the matter, `the estimation of

processor load is a di�cult problem for which no completely satisfactory solution

exists', I have collected a number of selection factors from the literature and from

Kremien and Kramer [19] in particular:

Cost |the additional time, space or hardware required to collect the metric and

process it into the `coherent summary'. Eager et al [9] state that, `the value

of a policy depends critically on the overhead required to administer it' and
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this will be seen shortly when I demonstrate that some load metrics can

easily ood the monitoring system. A particular problem to be avoided is

metrics with collection and/or processing costs which rise with load.

Relevance |the closeness of the relationship between the metric and the

resource being optimised. Simpler relationships are better because they give

more con�dence that the load balancing will work under a range of condi-

tions. A good metric should reect any spare capacity as well as indicating

the current load. Without su�cient care, relevant metrics are often costly

to collect and inexpensive metrics often lack relevance.

Timeliness |the metric should be an up-to-date reection of the load.

E�ectiveness/hit ratio |the e�ectiveness is the observed change in perform-

ance and the hit ratio is the number of migrations which turn out to improve

the balance versus the number of migrations which make the balance worse.

A bad decision not only fails to gain an improvement, it also imposes the

additional costs of the migration.

Scalability |the e�ectiveness of the metric should not decrease too quickly as

the number of processors being balanced increases. Metrics which are not

tied to particular topologies or communication speeds are to be preferred.

Generality and adaptability |the metric should not be limited to balancing

only a restricted set of programs and it should be e�ective over a wide range

of rates of change in load balance.

These selection factors are considered, metric by metric, in the case studies presen-

ted next.

4.1.3 Metric case studies

A wide range of load metrics are suggested in the literature as being of value. At

a crude level, the ratio of `system time' to `user time' gives an indication of the

nature of a processor's load. Research on `program tuning', such as that in Haban

and Wybranietz [13], suggests the time spent by tasks waiting for external events

is important, e.g. the time spent waiting for synchronisation and/or communic-

ation to complete. More ambitiously, the time-varying patterns of communication

may be revealing, whether gathered on a per-processor, per-task or per-channel

basis. Wang and Morris [35] suggest the Q-factor which measures how closely the

behaviour of a particular load balancing algorithm emulates that of an ideal �rst-

come-�rst-serve global scheduler. Artsy and Finkel [1] collect a whole battery of

statistics which they claim are, `comprehensive enough to support most conceiv-

able policies'.

I have chosen four metrics from the literature, metrics which can be measured

conveniently on the Testbed and which would seem to give a good indication of
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the load. Each metric is made the subject of a case study in which it is tested

against the selection factors presented above and in which use is made of practical

experimentation on the Testbed.

N-THREADS The number of threads created on, or migrated to, a particular

processor which have not terminated or migrated to another processor.

RQ-LENGTH The number of threads in the ready queue. Another per-

processor metric.

CPU-TIME The proportion of time for which user threads hold the CPU. This

is calculated per processor as an average over a �xed time period.

REM-COMM The amount of remote communications during a �xed time period

per link (a link is an unordered pair of processors).

The four metrics were chosen to make collection on the Testbed architecture

as simple as possible. Support for doing this comes from two sources: Kunz [20]

and Eager et al [9], all of whom found that balancing policies based on single load

metrics were as good as policies based on multiple, combined metrics. Research

from the related �eld of pro�ling and visualisation, such as that reported by

LeBlanc and Mellor-Crummy [21], suggests that program optimisations tend to be

either very simple and automatable or very complex and require multiple program

views to identify. The latter, complex optimisations are certainly beyond the scope

of this report (and perhaps not feasible in real time).

The test program. The Testbed's dedicated hardware monitoring system

provides an accurate and detailed method for testing the load metrics against the

cost, relevance, and generality and adaptability selection factors. The test program

used for this purpose is multi-phase which was introduced in Section 3.3.6. The

other selection factors (timeliness, e�ectiveness and scalability) are not measured

experimentally but are discussed in detail.

The cost of a metric is determined objectively by counting the number of

event packets emitted per time unit and, more subjectively, by an assessment of

the ease with which a coherent load summary can be constructed. Execution of

the multi-phase program on an otherwise idle machine produces a load which is

predictable and the relevance of the metric can be assessed by comparing the load

it indicates with the expected load.

Generality and adaptability of each candidate metric is assessed by considering

the aspects of program behaviour most likely to inuence the e�ectiveness of the

metric and by designing the test program multi-phase so that every combina-

tion of behaviours is generated. The aspects of behaviour most likely to be of

signi�cance are:

1. Whether the threads are predominantly compute or communication bound.
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Figure 33: N-THREADS|This graph shows, for each of the �ve processors, the

number of threads executing on that processor during the execution of the test

program multi-phase.

2. Whether most communication is remote, i.e. occurs between threads on

di�erent processors, or local, i.e. occurs between threads on the same

processor.

3. Whether communications are of very large or very small messages.

Consequently, the test program has eight phases as illustrated in Table 5 (page 32).

The same test program is used to test each of the four metrics but di�erent sections

of the instrumented operating system are enabled (as described in Section 2.2.3)

to generate the appropriate events.

Results for N-THREADS metric. The number of threads on each processor

is measured simply by instrumenting the appropriate operating system routines

so that a `create' event is emitted every time a new thread is created or arrives

during migration and a `delete' event is emitted every time a thread terminates or

is migrated to another processor. The monitoring program keeps one counter per

processor and increments or decrements them as appropriate. For the purposes of

this experiment each change in a counter is logged to a �le along with the time at

which the event was issued and the �le is then used to produce the graph shown

in Figure 33.
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Measuring the number of threads on each processor seems attractively simple.

However, when the selection factors listed in Section 4.1.2 are considered the

metric is seen to have a couple of serious problems which limit its usefulness for

load balancing.

On the plus side, the measurement is inexpensive to make (examination of

the log �le showed that about 100 events were emitted during the 33 seconds of

execution or 3 per second) since the Testbed threads are of medium grain and

are generally not created, migrated or destroyed so frequently. The timeliness of

the metric is very good since the events are issued immediately and require little

processing. The metric is independent of processor topology and communication

latency, so it is scalable.

On the minus side, the N-THREADS metric lacks relevance (and therefore is

unlikely to be e�ective) because it does not indicate anything about competition

for CPU cycles or communication bandwidth. In comparison with Figure 19 on

page 33, for instance, it is impossible to identify the program phases or, indeed,

the periods between phases when only a single thread is executing on the earth

processor.

Results for RQ-LENGTHmetric. The lengths of the processor ready queues

are determined by instrumenting the operating system routines that add and delete

threads from the ready queue|an event sequence of unit length is su�cient to

indicate whether the queue has grown by one or shrunk by one. Threads enter and

leave the ready queue only when synchronising with external events, for example

during communication|they do not leave the queue when they are scheduled on

the CPU. As before, the monitoring program simply maintains one counter for

each processor and records changes in a log �le which is then used to produce

Figure 34.

The cost of collection is greater than before (the test program generated 16800

events during its execution time of 33 seconds, an average of about 500 packets

a second) although the cost of processing each packet is no higher than before.

The event rate varies according to how frequently threads lose the CPU and are

blocked on synchronisation, communication or memory pages and how frequently

threads are pre-empted and remain in the ready queue.

The RQ-LENGTH metric is clearly more relevant than before, giving a picture

of activity that corresponds closely to what would be expected from the test

program's source code. In particular the greater competition for CPU cycles

during the �rst four compute-bound phases is obvious. It is interesting to note

that the metric does not indicate the speed at which the ready queue is moving|

this may be important because, for example, a long but fast moving queue (i.e.

most threads relinquish the CPU before being pre-empted) may still be suitable

for a thread that is not strongly compute bound.

Although the last four communication-bound phases appear di�erent from the

earlier, compute-bound phases, the metric does not give any direct information
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Figure 34: RQ-LENGTH|This graph shows, for each of the �ve processors, the

length of the ready queue during the program execution.

about the pattern of communication and it alone would not be of much use to a

balancing strategy that attempted to reduce inter-processor communication.

As before, however, the metric has good timeliness and good scalability.

Results for CPU-TIME metric. The average time that user threads spend

on the CPU can be calculated by issuing time-stamped events every time a user

thread is given the CPU by the scheduler and every time a user thread loses the

CPU because its time-slice is over or because it has requested a system service.

The monitor program simply logs the time and nature of the events (schedule or

deschedule). Calculation of the times for which the CPU was held by a user thread

is carried out as a separate exercise after the test program has terminated because

the event data rates are so high.

The metric can be de�ned as the percentage of a �xed time interval for which

the CPU was held by a user thread, so in each �xed time period the individual

times for which the CPU was held must be added up and the result divided

by the time period itself. Selecting a time period of 20ms I have experimented

with di�erent degrees of averaging: in Figure 35 the results are not averaged;

in Figure 36 the results are computed using a sliding window of 200ms and in

Figure 37 the greatest smoothing occurs as the percentage of user time at any

point is calculated from the user times for the preceding two seconds.

The cost of this metric is the highest so far, because of the rate at which
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Figure 35: CPU-TIME|Graph is plotted every 20ms showing the percentage of

user CPU time over the previous 20ms period.
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Figure 36: CPU-TIME|Graph is plotted every 20ms showing the percentage of

user CPU time over the previous ten 20ms periods.
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Figure 37: CPU-TIME|Graph is plotted every 20ms showing the percentage of

user CPU time over the previous hundred 20ms periods.

threads are scheduled and descheduled (about ten thousand schedulings occurred

during the program execution and the total event rate was roughly 615 events per

second), and has proved to be beyond the capabilities of the master processor to

deal with in real time. Although it might be desirable (for reasons suggested in

Section 4.2.1) to extend this system by passing a thread identi�er with each event,

it is obvious that the amount of processing required by the monitor to collect load

information on a thread-by-thread basis is prohibitive.

The CPU-TIME metric is relevant to the CPU usage but irrelevant to

the pattern of communication. It expresses the amount of computation being

performed versus idling or execution of system services, but it cannot distinguish

between a processor which, for example, always has one compute-bound thread

in its ready queue and another processor which has many more compute-bound

threads in its ready queue|this is a de�nite disadvantage.

The metric also illustrates the problem of timeliness: if the minimal smoothing

is increased to mask out the transients in Figure 35, then care has to be taken

that the perceived load does not fall behind the real load|the peaks in Figure 37,

for example, are about two seconds behind those in Figure 35.

Results for REM-COMM metric. The �nal metric indicates the amount of

remote communication on links, i.e. between pairs of processors. In contrast to

the previous three metrics which were collected in an event-driven way, this metric
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Figure 38: REM-COMM|This graph shows, for each of the ten proces-

sor-to-processor communication links, the number of communications that have

occurred during the last sample period of one second.

is collected by sampling

2

. Each processor counts the link communications as they

occur and, at �xed time intervals, transmits the totals to the central monitor and

resets the counts. The system can be recon�gured to work with di�erent time

intervals so that the appropriate balance between level of detail and amount of

event tra�c can be found.

The measurements made with multi-phase are shown in Figure 38. The

`link temperature' is the number of messages transmitted over a link per sample

interval. The key shows the ten links: `1-2' is the link between processors 1 and

2 for instance. The initial peak around one second is caused by the distribu-

tion of work from the processor where multi-phase was invoked to the other

processors. The small peaks around 10 and 13 seconds are caused by phases 3 and

4 during which the compute-bound threads also perform a small amount of remote

communication|note that the graph does not distinguish between the small and

large message sizes. The peaks around 23 and 30 seconds are caused by phases 7

and 8 during which much larger numbers of remote messages are sent.

The cost of this metric depends on the sampling period. Sampling once per

2

There are two techniques for deciding when to make load measurements. With sampling,

periodic or time-driven rules, measurements are taken at �xed time intervals. With triggering

or event-driven rules, measurements are taken when some predetermined set of circumstances

arise.
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Metric Event driven? Cost Relevant? Timeliness

N-THREADS yes low no guaranteed

RQ-LENGTH yes high yes guaranteed

CPU-TIME yes very high perhaps guaranteed

REM-COMM sampling low yes depends

Table 8: Summary of results.

second, as in this experiment, requires four events per second to be collected

from each processor (one for each link that processor may use) or twenty events

per second in total. A minimum of processing is required to combine the events

(processors increment their communication counts each time they send a message

so the counts from both ends of each link must be added to compute the total

number of messages sent over each link).

The REM-COMM metric provides a direct measure of the number of times

each processor has to send a remote message, although it does not distinguish

between the sending of large and small messages and Figure 12 (page 26) shows

that the time required to service messages depends strongly on the length.

The timeliness of the metric depends on the length of the sampling period and

although decreasing this period improves timeliness, it also increases the number

of possibly misleading transients. The scalability of this metric is the best of

all four metrics because the amount of monitoring data produced (and thus the

amount of processing) can be controlled by changing the sample period. (In fact,

the bene�ts of sampling are so great that, as will been seen shortly, it is worth

considering sampling variants of the other metrics.)

Case study conclusions. Referring to Table 8, the �rst metric (the number of

threads extant on each processor) is satisfactory for most selection factors but is

so lacking in relevance that it is not of any practical use. The second metric (ready

queue length) is relevant but expensive to collect and requires some smoothing.

The third metric (proportion of user time) is very expensive to collect and no

more relevant than the ready queue length. The fourth metric (number of remote

communications) is reasonably relevant and, with care, can be collected inexpens-

ively and with su�cient timeliness.

4.2 Strategy for Load Recon�guration

The �rst part of this section has considered the problems of de�ning a balanced

load and selecting good load metrics. I now propose a decision-making strategy for

recon�guration of the Testbed load based on the two most promising metrics from

the case studies. This strategy is then tested with a range of parallel programs to

see how close it comes to achieving a balanced load.

The load metrics used are a variation of RQ-LENGTH (ready queue length)

and REM-COMM (amount of remote communication). The Testbed optimises
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Figure 39: Components of the Testbed's load balancing system.

CPU load and communications load since, as Table 6 (page 39) shows, remote

communication is about twice as expensive as local communication. In order to

improve the quality of load recon�gurations, the responsibility for load balancing is

shared between a centralised decision strategy and a distributed candidate selector.

The components in the Testbed's load balancing system are depicted by Figure 39.

The load assessor is a software component which executes on the master

processor, collects the raw load data transmitted by individual slave processors

over the monitoring bus and forms it into a coherent load summary|the tech-

niques for doing this were discussed in Section 4.1. The decision maker is a new

software component which also executes on the master processor. The decision

maker inputs the load summary, identi�es load imbalances and issues recon�gur-

ation requests to the slaves.

Each recon�guration request received by a slave processor contains an indic-

ation of whether a compute or communication overload has been detected, and

the identity of the (presumably underloaded) processor to which a thread should
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be migrated. When a communication overload is signalled, the identity of the

overloaded link is also given. The job of identifying the best candidate thread for

migration is left up to the slave. If a compute overload has been indicated then

the slave will migrate the �rst thread it �nds in the processor ready queue. If a

communication link overload has been indicated then the ready queue is searched

for a thread whose last communication used the overloaded link or, if no such

thread can be found, the ready queue is searched for a thread whose last comm-

unication was not local. The bene�ts of sharing the responsibility for balancing

in this way between master and slave processors are discussed next.

4.2.1 Centralised versus distributed balancing

The intention of the Testbed's designers was that the event monitoring system

would collect load data for a centralised load balancer. The advantages of such

an approach are that the intrusion su�ered by the user's program on the slave

processors is reduced to the minimum possible, the balancing strategy can have a

global view of the entire machine and there is no risk of conict between multiple,

autonomous balancing agents.

However, experience gained during this research has con�rmed that central-

ised systems cannot be scaled up as easily as distributed systems, even when the

system in question has only six processors. If the Testbed monitoring were to

be completely centralised, i.e. the six slave processors emitted monitoring events

each time a thread was scheduled, preempted, or otherwise changed state and

the load assessor combined these event into a model of the load imposed by each

thread, then the load assessor would require more compute-power than the master

processor can possibly provide.

The semi-centralised, semi-distributed alternative employed on the Testbed is

to have each slave processor maintain its own load statistics and to transmit these

statistics to the load assessor at intervals. This reduces the amount of work the

load assessor must perform to manageable levels. However, now that the load

assessor models processor and link loads rather than the activity of individual

threads, the slave processors must accept the additional responsibility of selecting

candidate threads during migration.

Delegating candidate selection to the slave processors increases the interference

between the monitoring system and the user's program. However, the quality of

load balancing can be improved greatly because the slaves have access to local

information about the candidate threads which would otherwise have to be copied

to the load assessor on the master processor. Indeed, the idea that slave processors

should regularly submit a thumbnail sketch to the master processor of each of the

many threads they might be hosting just in case the balancer might want to

migrate some of them seems extremely wasteful.

The algorithm employed by the slave processors to select a candidate is

described in Figure 40. Threads with children are rejected because the formal

speci�cation of the Testbed requires that parent threads do not migrate. Threads
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thread *select(l) /*Return best candidate or NULL*/

link *l; /*Overloaded link or NULL if no such*/

{

thread *ct=NULL, /*Best candidate thread so far*/

*t; /*Variable to range over all..*/

for (t=first_thread; t<last_thread; t++) { /*..threads*/

if (has_children(t) || !in_ready_Q(t))

skip-this-loop; /*Ignore parents and blocked threads*/

if (l) { /*If optimising a link..*/

if (last_comm(t)==l) /*..and thread used link..*/

return t; /*..then return thread*/

else if (!ct || /*Else if no candidate yet or..*/

!last_comm(ct)) /*..cand's last comm not remote..*/

ct=t; /*..then remember new candidate*/

}

else return t; /*If not optimising any link..*/

} /*..then return thread*/

return ct; /*Return best candidate*/

}

Figure 40: The candidate selection algorithm, in a C-like pseudocode.
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not in the ready queue are also rejected because migrating themwill not (at least in

the short term) change the balance of the computational load. The last comm(t)

function returns the number of the link used during thread t's last communic-

ation, or NULL if the last communication was local or if the thread has never

communicated at all.

4.2.2 Establishing parameters for the decision strategy

There are two time periods to be determined for the Testbed's load balancer.

The �rst is the sample period, i.e. the interval at which the load assessor is to

furnish a load summary. The second is the migration period, i.e. the minimum

interval between the issuing of recon�guration requests. The reason for having a

�xed sampling period|in order to balance the quantity and the timeliness of load

information against the degree of smoothing|was discussed above with reference

to the REM-COMM load metric.

The classical reason for having a minimum migration period is to reduce the

possibility of ooding or thrashing, although this minimum must not be set too

high otherwise it will take a long time to syphon work away from overloaded

processors. The Testbed is additionally restricted since the proofs of correctness of

the migration protocols in Martin [26] do not guarantee safety when two threads

sharing a channel migrate together. The experience gained by performing the

proofs suggests that the migration protocols would need to be signi�cantly, but

not impossibly, more complex if safe, concurrent migrations were required.

One way to ensure that migrations are not overlapped is to make the migration

period greater than the maximum time required to complete a recon�guration

request. This latter time can be computed from the results presented in Section 3

as follows.

1. The recon�guration command is issued on the master processor and sent to

the appropriate slave processor over Centrenet. The Centrenet message is

small (16 bytes) and its ight time will be the same as the ight time of

a focus or rtr message|approximately 1.5ms (Figure 13). In the worst-

case scenario (as described in Section 3.3.5) the recon�guration command is

queued at the beginning of the schedule phase and is not sent until the send

phase, approximately one time-slice later, and the recon�guration command

arrives during the schedule phase and is not processed until the receive phase,

during which another time-slice may have elapsed. Thus, at least 41.5ms

must be allowed for the issuing of a recon�guration request and its processing

at the slave processor.

2. Provided that a candidate thread is found immediately, the time required

to pack a thread, send it over Centrenet and unpack it at the other end is

approximately 8.4ms (Table 6). In the worst case, the thread may arrive

during the schedule phase and not be unpacked until the receive phase,
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approximately one time-slice later. Thus, at least 28.4ms should be allowed

for the thread migration.

3. With some applications it is not always possible to �nd a candidate thread

immediately on arrival of the recon�guration request. This situation arises

most often with communication-bound applications where most of the

threads are blocked most of the time and cannot, therefore, be considered

candidates for migration.

If a recon�guration request arrives at time t and cannot be satis�ed immedi-

ately then it is satis�ed the next time a thread is inserted into the processor

ready queue. If the request is still unsatis�ed after n timer interrupts then

it is discarded.

Therefore, the total time that must be allowed for a recon�guration command to

complete is 41:5 + 28:4 + n � 20ms. Practical experimentation has shown that a

value for n of 25 is appropriate, hence a migration period of 569.9ms will ensure

that migrations do not overlap.

Theoretically, the average migration period can be reduced signi�cantly if the

slave processor is made to return a `success' indication to the master processor

on completion of the migration. For instance, if candidate threads can always

be found immediately (as is likely with a compute-bound application) then an

average migration period of (69:9=2)ms is possible. However, the migration period

is further constrained on the Testbed by its close relationship to the sample period,

as described next.

The Testbed's decision strategy is relatively simple and is based on the intuition

that if a signi�cantly high load is detected on a processor or link then an appropri-

ate recon�guration request is issued. Rather than assess the size of the overload

and issue a combination of requests intended to completely redistribute the over-

load, the load balancer issues a single request and waits to observe the e�ect of the

migration in the load summary before proceeding with further migration requests.

Thus, the migration period must always be greater than the sampling period and,

conversely, the sampling period has an upper bound determined by the frequency

with which migration is desired.

The actual values assigned to the sampling and migration periods are speci�ed

in the case studies in Section 4.3. While these values obey the constraints described

above, there is still some scope for optimising them with respect to the application

being balanced.

Once the sample and migration periods have been set, thresholds need to

be determined for overloaded (and underloaded) processors and links. If the

thresholds are set too low then the system may squander more time in migra-

tion than it saves by improving the balance. In the worst case, the system begins

to ood underloaded processors, or thrash. If the threshold is too high, then the

load may become very poorly balanced before the load balancer takes any action.
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Thresholds for the Testbed's balancer were determined by practical experimenta-

tion, as is reported in the next section.

4.3 E�ectiveness of the Balancer

This section considers a range of parallel programs, discusses the characteristics

of those that do and do not bene�t from load balancing and presents three case

studies showing the sort of bene�t which can be obtained from the Testbed's load

balancer.

At the simplest level, dynamic load balancing can be bene�cial when the

resources required by individual tasks are not, or cannot, be known when the

program is written. This may be due to fundamental unpredictability in the

program, because the program behaviour is highly dependent on its input data,

or simply because it is not worth the programmer's e�ort in �nding out. (Code

that is to be executed many times, such as the inner loop of a sorting function,

is usually worth optimising but for the many, less critical sections of code, it is

not cost-e�ective to perform optimisations.) Furthermore, the desire to achieve

reusability or portability at an algorithmic level is usually at odds with the desire

to achieve e�cient programs.

On the other hand, dynamic load balancing is of little value when the compu-

tation requirements are well known beforehand and when the program can be

optimised for a particular computer architecture.

There are two experimental approaches in the literature to testing load balan-

cing systems (an example of a formal approach can be found in Rommel [33]). The

�rst approach takes a simple program whose behaviour and optimal assignment

to processors is obvious: Boillat and Kropf [5], for example, use a test program

comprising a two-dimensional array of identical tasks where each task communic-

ates with two or four of its neighbours; Lin and Keller [23] use a ten-line divide

and conquer algorithm for binary tree traversal.

The second approach attempts more realism and uses much larger programs

with unpredictable behaviour. The e�ectiveness of the balancer is found by repeat-

ing the experiment, once with the balancer enabled and once with the balancer

disabled. Osser [30], for example, reports on the execution times of common Unix

utilities such as L

a

T

E

X and ls and Ogle et al [29] simulate a war game. This report

uses both approaches.

4.3.1 Case study: synthetic programs

The �rst case study explores the e�ectiveness of load balancing when applied

to synthetic programs with predictable behaviour. The test program synthetic

has a main loop in which a variable number of compute-bound, communication-

bound or `mixed' (half compute, half communication-bound) threads are created.

These threads execute inde�nitely and can be migrated between slave processors
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TIM: 60258

LNK: 127 106 106 36 74 74 0 0 144 144 (av 81)

RQL: 4 5 1 1 1 (av 2)

move work from 3 to 5 to quieten link 9/3-5 (mig #6)

mig #6: 1-00-003 arrives at 5, time 60880

TIM: 70240

LNK: 22 69 81 41 14 72 58 0 117 119 (av 59)

RQL: 4 3 1 1 2 (av 2)

move work from 4 to 5 to quieten link 10/4-5 (mig #7)

mig #7: 1-15-004 arrives at 5, time 70581

TIM: 80241

LNK: 12 58 24 61 0 48 54 0 81 119 (av 46)

RQL: 2 2 1 1 3 (av 2)

Figure 41: Extract from the Testbed load balancer's log �le.

as the load balancer sees �t. The number and type of threads are determined by

arguments passed on the command line.

Three experiments were performed to measure the e�ectiveness of load balan-

cing a program with �rst, 20 compute-bound threads, then 20 communication-

bound threads and �nally 20 mixed threads. In all cases the load balancing sample

and migration periods were one second (a reasonable value as determined by trial

and error) and the synthetic program was executed for one minute. The exper-

imental results are computed from a log �le produced by the load balancer. The

log �le reports the load summary received during each sample period and the load

recon�gurations as they occur, a sample is given in Figure 41: the TIM �eld gives

the time in ms at which the load summary was obtained; the LNK �eld gives the

number of communications on each of the ten links; the RQL �eld gives the length

of the processor ready queues for each of the slave processors.

Three graphs are produced for each experiment. In the �rst graph the lengths

of the ready queues of each processor are plotted against program time. In the

second graph the amount of remote communication on each of the ten processor-

to-processor links is plotted against program time. In the third graph the thread

migrations induced by the load balancer are reported using an invented notation

whereby a line between two processors indicates a single migration and the slope

of the line indicates the direction of the migration. For instance, a line joining

earth and fire with fire's point o�set to the right indicates that the migration

was from earth to fire.

The results of the �rst, compute-bound experiment are given in Figures 42

to 44. The test program is invoked on earth and it is seen that the ready queue

builds up rapidly and is then reduced as the load balancer syphons o� one thread

each second. After about 17 seconds the load is equalised across all processors. The
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Figure 42: Length of the ready queue on each of the �ve slave processors while

executing 20 compute-bound threads.

numbers of link communications are minimal|the initial burst between 2 and 18

seconds of program time being due to the thread migrations and consequent remote

paging. The individual migrations are much as expected: all migrations move work

away from earth and towards the other processors, di�erent destinations being

selected in turn. The hit ratio is perfect|no `backwards' migrations are seen|and

the program quickly settles down into a balanced mode.

The success of the load balancer is not quite so clear cut in the second experi-

ment with communication-bound threads (Figures 45 to 47). The computational

load does become balanced, although not until after 30 seconds. The link loads

are much more signi�cant than before but are also balanced, within a range of

about 20 messages per (one second) sample. Several of the links (1-3, 1-4, 1-5 and

2-3) end up with no tra�c at all although this is somewhat di�cult to see on the

crowded graph. The migrations shown in Figure 47 mostly occur between 0 and 30

seconds, program time. There are more of them than in the previous experiment

because this time there are 20 pairs of threads, i.e. 40 threads in all. The hit ratio

is less good than before with several `back' migrations moving threads o� space

and air.

The e�ectiveness of the load balancer with the mixed threads is very similar

to that with the communication-bound threads, so only the ready queue length

graph is shown (Figure 48).
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Figure 43: Number of communications on each link while executing 20

compute-bound threads.
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Figure 44: Thread migrations while executing 20 compute-bound threads.
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Figure 45: Length of the ready queue on each of the �ve slave processors while

executing 20 pairs of communication-bound threads.
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Figure 46: Number of communications on each link while executing 20 pairs of

communication-bound threads.
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Figure 47: Thread migrations while executing 20 pairs of communication-bound

threads.
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Figure 48: Length of the ready queue on each of the �ve slave processors while

executing 20 mixed threads.
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Figure 49: An asynchronous adder circuit.

4.3.2 Case study: asynchronous circuits

The second case study looks at the e�ectiveness of load balancing applied to a

realistic class of programs: simulations of asynchronous circuits. Conventional

design relies on clocks to control and synchronise the movement of data through

digital logic. Innovations such as parallel or pipelined data paths help increase

the speed at which such circuits can work. Asynchronous logic, however, has no

clock: the basic components compute their functions as soon as their inputs are

ready|an in-depth discussion can be found in Sayle [34].

Simulation of asynchronous circuits can be easily achieved on the Testbed. The

adder program, which simulates the 8-bit adder circuit shown in Figure 49, has

one thread for each element in the circuit (plus one to simulate the environment).

The threads wait for messages on their input channels, compute the appropriate

function and output a message or messages. If a record, with one �eld for the

delay time induced by each type of element, is communicated between threads

and each thread updates the appropriate �eld of the record according to its type,

then the output of the simulation is a list of delay times giving the total time the

circuit took to compute its answer. The simulation can be expected to have similar

dynamic properties to the communication-bound, synthetic experiment described

in the preceding section. The reason for carrying out the simulation is that the

65



0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

re
ad

y 
qu

eu
e 

le
ng

th

time (s)

earth
air

fire
water
space

Figure 50: Length of the ready queue on each of the �ve slave processors while

executing adder.
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Figure 51: Number of communications on each link while executing adder.
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Figure 52: Thread migrations while executing adder.

delay induced by a circuit is often a complex function of its inputs.

The results of load balancing the program adder are shown in Figures 50

to 52. As before, experimentation showed that sample and migration periods of

one second were appropriate. The total amount of computation is much lower

than before and it should be noted that the maximum value on the y-scale of

Figure 50 is one tenth that of the corresponding �gures presented earlier in this

section. This is due to a minimal amount of computation that each of the 15

threads has to perform in updating and passing on the delay record. In fact, the

computation is so limited as to fall below the load balancer's threshold.

In contrast, the degree of communication is high and the migrations carried out

between 1 and 12 seconds of program time are an attempt by the load balancer

to correct the situation. This is to some extent successful as from 15 seconds

onwards all but four links have had their tra�c reduced to zero. The high amount

of tra�c on links 1-2, 2-5, 3-5 and in particular 1-5 points to the limitations of

the load balancer in achieving a perfect load. In fact, the balancer's log �le shows

that recon�guration requests were issued to correct the problem but that the slave

processors could not �nd appropriate threads for migration.

4.3.3 Case study: population simulation

The third case study also involves the balancing of a simulation, although this

version of the population simulation known as `WaTor' and described in Fox et

al [11, Section 17] is much larger and more prone to dynamic behaviour than the
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adder simulation.

The simulation concerns the populations of sharks and �sh in a 100-by-100

cell ocean. Each cell may be occupied by a �sh or shark and each animal is

updated at each iteration with respect to its position, death through starvation

or regeneration by birth of a new animal. A novel addition is made to the basic

simulation: seasonal temperature variations occur across the ocean regions and

these a�ect the �sh's food sources, promoting or restricting the reproduction rate

as appropriate. This addition has the e�ect of inducing large changes in the load

balance during the simulation.

The wator program comprises multiple threads, each being responsible for

a region of the ocean. The threads iterate, exchanging boundary conditions

with their neighbours, updating the �sh and sharks within their region and then

performing conict resolution with their neighbours. In all experiments the wator

test program is executed for 100 simulation steps.

The output of the simulation is the total number of �sh and sharks in the

regions after each step: Figure 53 illustrates the predominant feature, which is the

booms and busts experienced by the �sh as they quickly build up their numbers by

reproduction only to become a target for a more slowly swelling number of sharks.

Once most of the �sh have been eaten, the shark numbers fall due to starvation,

the numbers of �sh take o� again, and the cycle repeats.

The e�ectiveness of load balancing the WaTor simulation is demonstrated by

showing �rst the graphs for ready queue and link loads without load balancing

(Figures 54 and 55) and then by showing the same loads with load balancing in

action (Figures 56 to 58).

The nature of the simulation algorithm is such that a period of intensive compu-

tation on all processors is followed by a period of intensive communication between

processors. The amount of computation and communication varies as the number

of �sh and sharks in the ocean. Without load balancing, the average time required

by a simulation step is around 10 seconds and this produces problems for the load

balancer. If, for instance, the load is sampled at the one second intervals used in

the preceding case studies, then the load balancer will collect several consecutive

samples suggesting that the Testbed is compute bound, followed by several consec-

utive samples suggesting that the Testbed is communication bound. To overcome

this problem, the load balancing sampling period is increased to 10 seconds.

Under the assumption that the processor air is responsible for region 2, fire

for region 4, space for region 3 and water for region 1, the graph in Figure 53

can be approximately matched against the graph in Figure 54 to show that the

region with the most �sh matches the processor with the longest ready queue. The

match is only approximate because the x-coordinate in Figure 53 is the simulation

step and not all simulation steps take the same amount of time. The fact that

the exchange of boundaries between neighbours enforces a kind of synchronisation

serves to accentuate the di�erences between processor ready queue lengths. (Note

that the processor earth is not shown in Figure 53 as it does not have any region
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Figure 53: Variation in number of �sh during 100 steps of the WaTor simulation.
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Figure 54: Ready queue variation during 100 steps of the WaTor simulation

without load balancing.
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Figure 55: Variation in link load during 100 steps of the WaTor simulation

without load balancing.
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Figure 56: Ready queue variation during 100 steps of the WaTor simulation

with load balancing.
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load balancing.
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Figure 58: Thread migrations while executing 100 steps of the WaTor simulation.
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Application Sequential Random Balancing

20 compute-bound threads 54 (100%) 15 (28%) 21 (39%)

20 communication-bound threads 72 (100%) 41 (57%) 35 (49%)

adder simulation 93 (100%) 183 (197%) 126 (135%)

wator simulation 900 (100%) 550 (61%)

Table 9: A comparison of the times (in seconds) required by each case study

application to: execute sequentially; execute in parallel, assigned at random; and

execute in parallel, assigned by the load balancer.

associated with it.)

In the preceding two case studies the sampling period was much larger than

the basic period of the program being balanced. This was bene�cial since the

load summary presented to the load balancer was a smoothed version of the real

load. Now, as the sampling period is of the same size as the basic period of the

simulation, the load summary received by the balancer is unsmoothed|and this

can be seen particularly easily in the peaks and troughs of Figure 55.

The e�ect of load balancing the wator simulation is seen in Figure 56 where

the average ready queue length is reduced (cf. Figure 54). This strategy leads to

an increase in remote communication|compare Figures 55 and 57|but since the

time required to complete the 100 simulation steps is reduced from 900 seconds to

under 600 this strategy is bene�cial. The bene�t derives from the fact that without

load balancing one, busy processor is holding the others up whereas with load

balancing several processors are kept busy|compare Figures 54 and 56. Figure 58

indicates the highly dynamic nature of the simulation: in contrast to the previous

case studies no steady state can be reached and the load balancer must continually

recon�gure the load in order to maintain balance.

4.3.4 Summary

The e�ectiveness of the Testbed's load balancer is summarised in Table 9. Each

of the applications in the case studies presented above is made to perform a �xed

amount of work and is executed three times: once with all threads on the same

processor (wator excepted); once with threads assigned to processors at random;

and once with threads assigned to processors by the load balancer.

For the compute-bound application random allocation, which assigns equal

numbers of threads to each processor, is optimal and therefore out-performs the

load balancer. However, if the total amount of computation is increased then the

load balancing time will asymptotically approach the random allocation time. For

the communication-bound application, the load balancer out-performs random

allocation because it can move threads to convert remote channels into local chan-

nels. If the total number of communications is increased, then the load balancer's

performance will show even greater improvements.

The adder simulation takes longer to execute in parallel, although the load
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balancer is still better than random allocation. As the size of the circuit being

simulated is increased, however, the time required for sequential execution will

become longer than the time required for parallel execution and the load balancer

can be more e�ective. While it is possible to retune the balancing decision maker

for the current simulation size so that it optimises links more aggressively, this is

likely to worsen the balancer's performance with more `typical' programs.

The wator simulation also shows that load balancing is better than random

allocation. In this case, it is the ability of the load balancer to react to load

changes during the execution that produces the improvement. As noted earlier,

such gains will increase the longer the simulation is executed.

5 Conclusions

In Section 3 a detailed and accurate pro�le was made of the performance of the

Testbed operations involved in task migration. Results were presented for the time

required to send and receive messages of varying lengths over local and remote

channels. The average times required to migrate a thread between processors

and to copy a page of memory were also given. The e�ects of increased back-

ground load were discussed, with reference to the Testbed operating system's main

program loop. Finally, a test program was executed to simulate combinations of

extreme behaviours and thus establish the bounds on the performance expected

from typical user programs.

In Section 4 I discussed the important issues in load balancing and proposed

an implementation for the Testbed based on a detailed knowledge of the costs

of various operating system functions, and experimental results indicating the

e�ectiveness of di�erent load metrics. I presented selection criteria for load metrics

and illustrated their use in several case studies. I also informally characterised a

`balanced load' and presented detailed data showing the behaviour of the Testbed

load balancer, indicating its strengths and weaknesses. Although the Testbed

environment is speci�cally designed for collecting event trace data, I now discuss

the extent to which the results obtained on the Testbed are relevant for other

types of parallel computer systems.

Although Douglis and Ousterhout [8], for example, argue that the additional

overheads of load collection make dynamic migration prohibitively expensive and

Ieumwananonthachai et al [15] say the information collected will usually be incom-

plete and out of date, the work presented in this section (and that of, amongst

others, Livny and Melman [24]) shows that the usefulness of load balancing should

not be doubted. Whilst I do not claim that all kinds of parallel program will bene�t

from being balanced, it does seem plausible that many of the programs in common

use will. With migration times in the order of milliseconds, any programs that

execute for seconds or minutes become candidates for balancing.

The results of the case studies on load metrics should be broadly applicable

to other types of multicomputer despite the fact that the results are partially
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dependent on the relative costs of computation and communication on the target

architecture. However, the general problem of �nding load metrics that are inex-

pensive, timely and relevant remains. Moreover it seems likely that the possibility

of obtaining a particular load metric will be greatly determined by the target

computer.

The other major problem area is the tuning of the balancing system. It is not

easy to determine sensible sample periods or to set thresholds above which a load

is considered to require rebalancing. In fact, it may prove that such tuning needs

to be performed dynamically according to the program(s) being balanced.

The main limitation of the Testbed load balancer is that it only works with �ve

processors and the ultimate aim is to write balancing systems that will work with

much larger collections of processors. However, the following three-step procedure

has proved valuable in the design of the Testbed balancer and will apply to larger

systems, even those not fully connected.

1. Local agents collect and submit just enough information to one or more

centralising agents for the centralising agents to establish a global view.

2. On the basis of their global view, the centralising agents then indicate to a

subset of the local agents where imbalances are occurring.

3. The local agents use their (extensive) local knowledge to decide the best way

to remedy the imbalance.

The only di�culty in applying this procedure is in the selection of centralising

agents with a wide enough global view whilst maintaining a suitably low comm-

unication delay between each centralising agent and associated local agents.

It is a conclusion of this report that software-only monitoring and hybrid monit-

oring with limited hardware support are the most cost-e�ective methods for gath-

ering load data. Three sets of results are combined to justify this assertion.

� The case studies on the e�ectiveness of the Testbed's load balancer in

Section 4.3 showed that signi�cant speed-ups could be achieved with the

RQ-LENGTH and REM-COMM metrics.

� The case studies on load metrics in Section 4.1.3 showed that such metrics

could be gathered relatively cheaply, in terms of event rates. These metrics

could also be gathered by purely software instrumentation.

� Section 3.3.7 showed the Testbed's sustainable event rate is far below the

theoretical event rate because the software components that produce the

load summary have a much lower throughput than the dedicated monitoring

hardware.

Therefore, most of the load balancing e�ort is made by the software and not by

the hardware. A similar conclusion was reached by Phillips [31]|he found that
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a network of Transputers could be load balanced without dedicated monitoring

hardware with an overhead of only 2%.

Experience in designing the operating system for the Testbed and in instru-

menting the code indicates that it would not be cost-e�ective to enhance the

capabilities of the hardware so that it performed a greater proportion of the load

balancing activities. The necessary load information is very much more di�cult

to extract with hardware than with software. However, there is one signi�cant

bene�t to be gained by having hardware support for communicating load data

between processors: the load data is much more timely, i.e. it is not subject to

contention for the main processor interconnect.
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A Test Program Listings

The programs are given in a C-like pseudocode.

A.1 local

#de�ne MAX MSG 5000

main()

f

char bu�er[MAX MSG];

create thread(id2, thread2, on this processor);

for (msg len=1; msg len�MAX MSG; msg len+=MAX MSG/100) f

compute(approx 50 ms);

for (rep=0; rep<10; rep++) f

compute(approx 10 ms);

send message(channel1, bu�er, msg len);

g

g

send message(channel1, bu�er, 0);

wait(for child);

exit();

g

thread2()

f

char bu�er[MAX MSG];

while (receive message(channel1, bu�er, MAX MSG));
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exit();

g

A.2 remote

#de�ne MAX MSG 5000

main()

f

char bu�er[MAX MSG];

create thread(id2, thread2, on another processor);

for (msg len=1; msg len�MAX MSG; msg len+=MAX MSG/100) f

compute(approx 50 ms);

for (rep=0; rep<10; rep++) f

compute(approx 10 ms);

send message(channel1, bu�er, msg len);

g

g

send message(channel1, bu�er, 0);

wait(for child);

exit();

g

thread2()

f

char bu�er[MAX MSG];

while (receive message(channel1, bu�er, MAX MSG));

exit();

g

A.3 migrate

#de�ne MAX MSG 5000

main()

f

char bu�er[MAX MSG];

create thread(id2, thread2, on this processor);

for (many loops) f

send message(channel1, bu�er, MAX MSG);

compute(approx 100 ms);

g

wait(for child);

exit();
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g

thread2()

f

char bu�er[MAX MSG];

for (many loops) f

receive message(channel1, bu�er, MAX MSG);

migrate(me, from here, to anywhere);

g

exit();

g

A.4 multi-phase

main()

f

int i, id=2, p, phase;

for (p=1; p<6; p++)

for (i=0; i<5; i++)

create thread(id++, thread, on processor(p));

for (phase=0; phase<8; phase++) f

barrier send();

barrier send();

compute(for 1000 ms);

g

wait(for children);

exit();

g

thread()

f

int big msg,

comm bound,

comm remote,

i;

for (comm bound=FALSE; comm bound<2; comm bound++)

for (comm remote=FALSE; comm remote<2; comm remote++)

for (big msg=FALSE; big msg<2; big msg++) f

barrier receive();

for (i=0; i<10; i++) f

compute(for 1 ms);

if (comm bound)

if (comm remote)

do remote comms(big msg?MAX MSG:1);
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else

do local comms(big msg?MAX MSG:1);

else

compute(for 9 ms);

g

barrier receive();

g

exit();

g

A.5 overow

main(compute time)

int compute time;

f

int stop time=clock()+30 SECONDS;

while (stop time>clock())

if (send event(0)==0) f

printf("send event fails: monitoring bus full\n");

break;

g

else compute(compute time);

g

A.6 synthetic

main()

f

int id=2;

for (number of communicating pairs) f

create thread(id++, thread1, on any processor);

create thread(id++, thread2, on any processor);

g

for (number of computing threads)

create thread(id++, thread3, on any processor);

for (number of mixed pairs) f

create thread(id++, thread4, on any processor);

create thread(id++, thread5, on any processor);

g

wait(for children);

g

thread1()

f
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char bu�er[MAX MSG];

for (loop inde�nitely)

send message(channel(get pid()), bu�er, MAX MSG);

g

thread2()

f

char bu�er[MAX MSG];

for (loop inde�nitely)

receive message(channel(get pid()�1), bu�er, MAX MSG);

g

thread3()

f

for (loop inde�nitely)

compute(approx 1 ms);

g

thread4()

f

char bu�er[MAX MSG];

for (loop inde�nitely) f

compute(approx 10 ms);

send message(channel(get pid()), bu�er, MAX MSG);

g

g

thread5()

f

char bu�er[MAX MSG];

for (loop inde�nitely) f

compute(approx 10 ms);

receive message(channel(get pid()�1), bu�er, MAX MSG);

g

g

A.7 adder

main()

f

create keller(id++, input channels, output channels);

create call(id++, input channels, output channels);

create muller(id++, input channels, output channels);

create merge(id++, input channels, output channels);
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/� ...and so on for the other 10 circuit elements �/

for (op1=0; op1<256; op1++)

for (op2=0; op2<256; op2++) f

delay record r;

int n;

zero delays(&r);

inject(op1,op2,&r);

n=receive answer(&r);

printf("%d + %d is %d", op1, op2, n);

print delays(r);

puchar('\n');

g

exit();

g

keller()

f

int state=0;

for (loop forever) f

delay record r;

n=alt receive(&r, input channels);

r.keller++;

if (set channel(n)) f

state=1;

send output(&r,S);

g

else if (reset channel(n)) f

state=0;

send output(&r,R);

g

else if (test(n) f

if (state) send output(&r,T1);

g

g

g

call()

f

int state=0;

for (loop forever) f

delay record r;

n=alt receive(&r, input channels);

r.call++;
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if (caller1(n)) f

state=1;

send output(&r,R);

g

else if (caller2(n)) f

state=1;

send output(&r,R);

g

else if (acknowledge(n)) f

send output(&r,state?R2:R1);

g

g

g
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