
Dividing and Conquering

Murray Cole

Department of Computer Science, University of Edinburgh.

e-mail: mic@dcs.ed.ac.uk

Abstract

We suggest that the components of the well known divide-and-

conquer paradigm can be pro�tably presented as independent con-

structs in a skeletal parallel programming model. We investigate this

proposal in the context of a rendition of Batcher's bitonic sorting al-

gorithm in which the nested parallel structure of the program is neatly

abstracted from the low level detail of a at presentation. We show

that a variant of the conquer construct can make the presentation

neater still, and discuss the implications for the design of skeletal

models.

1 Introduction

The skeletal approach to parallel programming [4, 5] proposes that useful

and recurring forms of parallel program structure should be abstracted as

second order control constructs (usually expressed in a functional notation)

and that the programmer's task should be to compose and nest instances

of these constructs to express the parallelism available in a computation

in a controlled and well-structured manner. In its strictest form [5], the

methodology requires programs to be expressed on two levels, an outer level,

dealing exclusively with skeletal forms, and an inner level, specializing the

skeletons with application speci�c, sequential code. The implementation task

is then simpli�ed to the composition of the pre-de�ned structures with ad-

hoc, unstructured parallelism explicitly disallowed. The restriction is both a

strength (from the perspective of e�cient implementability) and a potential

1

weakness, (in that without a suitable set of primitive skeletons, algorithm

expression will be hindered). Thus, one of the central challenges in the

design of skeletal programming systems concerns the correct choice of skeletal

primitives. These should be generic enough to allow the expression of a wide

range of algorithms from a small basis of constructs, but should minimize the

need for code which is conceptually redundant but syntactically necessary.

Most skeletal programs presented in the literature involve either at com-

positions of skeletons or nested structures in which the outer structure is a

simple `map' with the consequent mutual independence of inner level struc-

tures (indeed the NESL language [3] restricts nesting so that only `map' par-

allelism can be expressed at all but the innermost level). In this paper, we

present a three level skeletal rendition of Batcher's bitonic sorting algorithm

in which the top two levels involve non-trivial parallelism. We believe (albeit

subjectively) that such a presentation brings out the algorithmic structure

more clearly than its conventional diagrammatic expression or the equival-

ent at parallel program. From the skeletal perspective, the example is of

interest in that the nested structures are naturally expressed as independent

instances of `divide' and `conquer' skeletons in which the corresponding `con-

quer' and `divide' phases of a conventional `divide-and-conquer' presentation

would be conceptually null. This suggests that these two structures might

usefully be presented as independent constructs in skeletal programming sys-

tems. Since `conquer' is already otherwise known as `fold' or `reduce' (given

certain algebraic constraints), we believe that some operation analogous to

\divide" should have a similar status and exposure. We then present a second

rendition of the program, in a similar style, but exploiting a generalized ver-

sion of the divide primitive admitting a more faithful representation of the

original algorithm.

2 Bitonic Sort

Batcher's bitonic sorting network was originally published in [2] and has be-

come one of the best known examples of intricate parallel algorithm design,

with reworkings for a variety of networks including shu�e-exchange, hyper-

cube and mesh. In this section we review the key elements of the algorithm

and comment on standard presentations thereof. The unfamiliar reader is

referred to any standard parallel algorithms text (for example [7]) for more

2

ce

ce

ce

ce

8

1

1

8

2

4

6

7

5

3

2

4

3

7

5

6

Figure 1: Bitonic merge step

detailed discussion. As is customary, we will assume that the number of

items to be sorted is an exact power of two.

A bitonic sequence consists of two portions, one ascending the other des-

cending (or can be cyclically shifted to have this form). Take such a sequence,

shu�e it and compare-exchange the adjacent pairs. Now considered the se-

quence of all `losers' of the comparisons and the sequence of all `winners'

independently. The two key observations (illustrated by example in �gure 1)

are that

1. these sequences are both themselves bitonic

2. none of the losers is larger than any of the winners.

To sort the data, it remains to independently sort the losers and the

winners, concatenating the results (because of 2). The independent sorts can

be achieved recursively (because of 1), with the obvious base case.

We now know how to sort a bitonic sequence, but of course we want to

sort arbitrary sequences. The �nal observation is that we can create a bitonic

sequence from an arbitrary one by sorting half the items into ascending order

and the other half into descending order. Thus, there is a mutual recursion

in the full de�nition - we sort arbitrary sequences with help of a bitonic

sorter, which itself requires the assistance of smaller arbitrary sorters. At this

point, conventional presentations tend to resort to diagrams which atten the

required communication structure into complex diagrams in the style of of

�gure 1 and to unintuitive bit-twiddling code fragments to determine the

`parity' (low-high or high-low) of the compare-exchange units required to

produce appropriate ascending and descending sub-sequences.

3

Related papers, investigating the expressivity of functional programming

notations as sources of parallelism, have noted that the algorithm can be ex-

pressed in a nested divide-and-conquer form. In particular Mou and Hudak

[9] present the algorithm in terms of their `divacon' construct, while Misra

presents the bitonic merge component of the algorithm in terms of recurs-

ive operations on `powerlists' (in which the constructors, designed with the

expression of divide-and-conquer algorithms in mind, ensure that lists are

always of length which is a power of two).

In the next section we propose that the phases of a conventional divide

and conquer primitive be provided independently and then exploit them to

present a skeletal, formulation of Batcher's algorithm, following the style of

[9], but with the removal of operations which are conceptually (i.e. at the

algorithmic level) redundant.

3 Separating Divide and Conquer

The divide-and-conquer paradigm has a long history parallel programming

and algorithm design (for example [1, 6, 9] and many others). Conventional

presentations require the programmer to specify both a divide operator and

a combine operator, as well as test for the base case and a function to be

applied when that case arises.

d&c triv base div com x =

if triv x then base x

else com (map (d&c triv base div com) (div x))

From a skeletal perspective, the exibility of such a de�nition is simultan-

eously attractive and daunting. To the programmer, the unrestricted degree

of the division process looks convenient. To the system, it presents a dy-

namic scheduling problem. Similarly, the need to specify both divide and

conquer phases is often, in conceptual terms, an unnecessary chore, essential

to make the program consistent, but contributing nothing to the clarity of

the exposition. For example, the divide operation in a standard mergesort,

serves simply to transform the list into a list singletons for processing by

the conquer phase which does the `real' work. In a parallel skeletal system,

this extra `redundant' computation would at best complicate the compilation

4

process, and at worst impair the achieved run-time, by faithfully scheduling

and executing the recursive partitioning.

Our main intention in this paper is to argue that these are overheads

we cannot a�ord in the e�ciency conscious context of parallel programming.

While there may be a place for fully exible divide-and-conquer skeleton, it

should only be exploited when strictly necessary and a simpler set of primit-

ives can provide equivalent and often more appropriate expressivity without

unnecessarily cluttering the code and, more importantly, the compilation and

run-time systems.

Our suggestion is as follows. Firstly, following [8], we believe that the

`powerlist' restriction is acceptable for many good parallel algorithms and

we will assume that it holds for all the lists in the ensuing discussion. More

importantly, we propose that the divide and conquer phases be presented as

independent `skeletal' operations.

3.1 Conquer

Our conquer is more or less standard, in that it is essentially a `fold' (or

`reduce') operation restricted in such a way that the usual parallel tree eval-

uation is actually enforced (rather than being optional). Semantically, its

behaviour can be de�ned precisely as

onelevel f [] = []

onelevel f (x::(y::xs)) = (f x y)::(onelevel f xs)

conquer f [x] = x

conquer f (x::y::xs) = (conquer f o onelevel f) (x::y::xs)

with the `powerlist' assumption ensuring that the `missing' patterns are not

required. We should emphasize that we use this sequential code only as

a semantic rather than an operational speci�cation. More intuitively (and

informally) it is de�ned by �gure 2, where it is crucial to remember that each

instance of f may itself be parallel.

3.2 Divide

Our divide skeleton is less conventional. Its semantics are de�ned formally

as

5

f

f f

f f f f

f f f f f f f f

 1x x x x x x x x x x x x x x x x 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2: Operation of conquer

f

f f

fff f

f f f f f f f f

 x

?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?][

Figure 3: Operation of divide

divide f x = if singleton x then [x]

else ((flatten o (map (divide f)) o ptol o f) x

ptol (x,y) = [x,y]

where flatten removes one level of sequencing, and informally by �gure 3.

Notice that we use the type system to require the dividing operation f to be

of type �! (�;�).

4 A Nested Parallel Rendition of Bitonic Sort

We now present Batcher's algorithm in terms of the new primitives. At this

level, the program essentially follows that of [9], but with the isolation of

redundant divide and conquer phases. We begin at the outer level with the

simple observation that the process involved is that of the conquer phase of

6

a traditional divide and conquer algorithm. The conquer step is to produce

a single sorted sequence from two sorted sequences of half the length

1

. The

fact that one of these sequences should be reversed is not signi�cant here

and will be handled at an inner level (although as we will address later, this

represents a slight divergence from the real essence of Batcher's algorithm).

Thus, at this level our program has the form

bitsort = conquer bitmerge o map (fn x => [x])

In Mou's presentation, the map phase (which as we have noted is conceptu-

ally redundant) is coded into the divide-and-conquer call and given similar

apparent status to the bitmerge which does the real work. It would be im-

plicit in a directly programmed imperative version. We speculate (though do

not pursue here) that it might be possible to infer, in a suitably restricted

skeletal system, rather in the manner of an implicit type cast, thereby leaving

it altogether unstated, or at the very least, to have it as a routine prede�ned

data manipulation (like ML's explode).

As we have seen, the utility of the algorithm is that bitmerge can also

be parallelized. The key here is to view the inner level computation described

in section 2 as a `dividing' operation which creates two sequences from one.

Applied recursively (with the recursion wrapped up in our second skeletal

construct), it turns a sequence into a sequence of singleton sequences, with

property 2 above showing that these are sorted. It only remains to atten

out one level of sequencing (as above, this would be implicit in an imperative

formulation). At the third and innermost level, the dividing operation itself

is expressed through a simple map.

Thus, we can instantiate `divide' to describe the behaviour of the bitonic

merge algorithm as

bitmerge xs ys

= (flatten o divide (bmstep ce)) (xs@(reverse ys))

ce (x:int,y) = if x<y then (x,y) else (y,x)

1

Just like mergesort, and indeed, the original algorithm is often referred to as bitonic

mergesort.

7

bmstep ce = unzip o (map ce) o zip o split

where split splits a sequence in two and unzip is e�ectively an inverse of zip,

but returning the two zipped sequences concatenated as a single sequence.

Notice that the inner level requires some pre and post processing to re-

organize the data - some of this is algorithmic (for example the shu�e, ex-

pressed here as a zip), some (for example the attening of the resulting list

and the split) is again essentially trivial.

The essence of the algorithm, that it is a conquer with an operator which

divides with an operator which maps, is now clear from the de�nitions of

bitsort, bitmerge and bmstep, and would be even clearer if some of the

data manipulations programmed explicitly in this version were provided as

built-in operations.

We note that second input to the inner phase must be reversed before

processing. This both complicates the code (and thereby the language and

implementation process) and is a clumsy expression of one of the key ideas

in the algorithm, that the input to the merge operation should be bitonic.

In the next section, we present an alternative conquer skeleton which allows

this idea to be expressed more naturally.

5 A Generalized Conquer

Our second conquer construct (from which the conquer above can be special-

ized) allows left and right sub-trees to (recursively) apply distinct combining

operators. In bitonic sort, this can be exploited (in place of the standard

`merging' structure employed above) to capture the idea that matching pairs

of sequences within the merge should be alternately sorted into ascending

and descending order (so that their concatenation is bitonic). Informally,

this conquer' is described by �gure 4, and can be more formally speci�ed as

onelevel' f g [] = []

onelevel' f g (x::(y::xs)) = (f x y)::(onelevel' g f xs)

conquer' f g [x] = x

conquer' f g (x::y::xs) = (conquer' f g o onelevel' f g) (x::y::xs)

8

f

f

f f

f f f f

 1x x x x x x x x x x x x x x x x 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

g

g g

g g g g

Figure 4: Operation of conquer'

We can now re-express the sorting algorithm as

bitsort'

= conquer' (bitmerge' (bmstep ceup)) (bitmerge' (bmstep cedown))

o (fn x => [x])

bitmerge' f xs ys = (flatten o divide f) (xs@ys)

where ceup is just the ce we had earlier and cedown produces descending

outputs, so that when passed into the two instantiations of bitmerge', we

obtain ascending and descending mergers as appropriate. Notice that the

unnatural `reverse' is no longer required.

6 Observations

Since we have earlier argued against over-generality in skeletal constructs,

we should comment on the desirability of introducing our own generalized

conquer'. To the programmer, the fact that conquer f = conquer' f f

means that the more specialized form could easily be prede�ned as a special-

ization of the latter. Of course the same could be said of a pre-packaged d&c

primitive specialized to the cases in which one or other phase is trivial. More

importantly, de�nition of conquer in terms of conquer' implies no addi-

tional complication to the implementation mechanism - it simply determines

which operations should be applied at which predictable points in the evalu-

ation tree. In contrast, source level specialization of full divide-and-conquer

risks extra work unless accompanied by a complementary specialization of

the implementation.

9

References

[1] Axford, T. \The divide-and-conquer paradigm as a basis for parallel

language design", in Advances in Parallel Algorithms, Kronsjo L. and

Shumsheruddin D. (Eds), Blackwell Scienti�c, 1992.

[2] Batcher, K. "Sorting Networks and their Applications", in Proc. AFIPS

Spring Joint Computer Conference, volume 32, pages 307-314, 1968.

[3] BlellochG.E.. "Programming Parallel Algorithms", in Communications

of the ACM, volume 39, number 3, 1996.

[4] Cole, M.I., \Algorithmic Skeletons: Structured Management of Parallel

Computation", Pitman/MIT Press, 1989.

[5] Darlington, J. and Guo, Y. and To, H.W. and Yang, J., \Parallel Skel-

etons for Structured Composition", in Proceedings of ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages

19-28, ACM Press, 1995.

[6] Horowitz, E. and Zorat, A., \Divide-and-Conquer for Parallel Pro-

cessing" , IEEE Transactions on Computers, volume 32, number 6,

pages 582-585, 1983.

[7] Kumar, V. and Grama, A. and Gupta, A. and Karypis G. \Intro-

duction to Parallel Computing: Design and Analysis of Algorithms",

Benjamin/Cummings, 1994.

[8] Misra, J. \Powerlist: A Structure for Parallel Recursion", in A Clas-

sical Mind: Essays in Honour of C. A. R. Hoare, Prentice Hall, 1994.

[9] Mou Z.G. and Hudak, P. \An Algebraic Model for Divide and Conquer

and its Parallelism", Journal of Supercomputing, volume 2, pages 257-

278, 1988.

10

