
Computer Systems Group

T
H

E

U
N I V E R

S
I

T
Y

O
F

E
D

I N B U

R
G

H

Simplifying Hardware for Out Of Order Execution using the
Decoupling Paradigm

by

Graham P. Jones and Nigel P. Topham

CSG Report Series CSG-32-97

Computer Systems Group September 1997

Department of Computer Science
University of Edinburgh
The King’s Buildings
Edinburgh EH9 3JZ



Simplifying Hardware for Out Of Order

Execution using the Decoupling Paradigm

Graham P. Jones

�

and Nigel P.Topham

y

Technical Report CSG-32-97

Department of Computer Science

University of Edinburgh

September 23, 1997

Abstract: Future hardware and software technology will try to provide improved

performance by extracting higher levels of parallelism. However the cost of a main

memory access - in terms of missed instruction issue slots - increases with faster pro-

cessors and greater issue widths. For this reason latency hiding technology remains

one of the most important parts of high performance processor designs.

In this paper we investigate the behaviour of data prefetching on an access decoupled

machine and a superscalar machine. Access decoupling is a latency hiding tech-

nique that partitions a program into two separate instruction streams to aggressively

prefetch data. Superscalar architectures can support data prefetching through out-

of-order execution, non-blocking loads and lock-up free caches. In this paper we

investigate if there are bene�ts to using the decoupling paradigm given that an out-

of-order (o-o-o) superscalar architecture could in principle prefetch to the same degree

as an access decoupled machine.

We have found that for large issue width the access decoupled machine can hide

memory latency more e�ectively than a single instruction window o-o-o superscalar

architecture. For realistic window sizes, our results show that to achieve the same

performance as an access decoupled machine our o-o-o superscalar machine requires

an instruction window 2.5 to 5 times larger.

Given that window issue logic is critical to processor clock speeds and is dependent on

window sizes, architectures that reduce window logic complexity will be of interest to

future designers. Our �ndings demonstrate that an access decoupled machine o�ers

the bene�ts of e�ectively hiding memory latency whilst reducing the complexity of

window issue logic.

Keywords: Access Decoupling, Latency Hiding, Superscalar, Out-of-Order Execu-

tion

�

email: gxj@dcs.ed.ac.uk

y

email: npt@dcs.ed.ac.uk

1



1 Introduction

The future of high performance microprocessor design is to provide improved performance

by extracting higher degrees of instruction level parallelism. In superscalar architectures

parallelism is exploited by reordering instructions within an instruction window and issuing

multiple independent instructions per cycle. However as processor speeds increase and issue

widths get larger the cost of a main memory access is becoming relatively more expensive.

One solution is to hide memory latency by data prefetching.

Data prefetching is a technique that hides memory latency by overlapping access and

data operations. Data prefetching can be implemented in either hardware [8] and soft-

ware [4] or a hybrid [5] of both schemes. However as memory latencies become relatively

more expensive the number of independent overlapped instructions required to hide the

access times increases. Larger instruction windows are therefore required to detect inde-

pendent instructions that can execute in parallel with memory access operations.

The pressure to increase window sizes is also driven by the goal of providing ever larger

issue widths. However large window and issue width sizes introduces greater complexity in

window issue logic. A recent paper has shown that delays in the issue logic vary quadrat-

ically with window and issue width size [12]. Since delays in issue logic will be critical to

processor clock there is a need to consider architectures that simplify issue window logic.

To solve the window complexity problem some architectures use separate microclusters.

Microclusters may share or have a dedicated instruction window, but each has its own

register �le and function units. This design simpli�es window logic by agging instructions

for execution on particular microclusters. This reduces the size of the instruction window

but can limit the number of instructions issued per cycle.

Access decoupling is a latency hiding technique that partitions a programs - statically or

dynamically - into two separate instruction streams in order prefetch data aggressively. The

instruction streams are loosely coupled. One stream, executed on an address unit (AU),

prefetches data for the second stream, executed on a data unit (DU). Memory accesses

can then be pipelined to tolerate large memory latencies provided the two streams can

decoupled su�ciently.

In principle the same level of prefetching in an access decoupled machine could be

achieved with an out-of-order (o-o-o) superscalar architecture. The question is then \why

should designers consider using the decoupling paradigm?"

Memory latencies are typically 20-50 cycles whereas arithmetic function latencies are

2-5 cycles (excluding divide and intrinsics). A system could easily tolerate a small degree

of o-o-o execution amongst arithmetic operations provided loads could slip by a large

amount with respect to arithmetic operations. This slippage between arithmetic and load

operation is exactly what occurs in a decoupled machine. In other terms, we can have

small instruction windows for arithmetic and access operations provided the latter can

slip by a large amount with respect to the former. To illustrate this idea in section 6 we

introduce the concept of the equivalent single window (ESW). The ESW is the minimum

size of window required by a processor with a single window to have the same instructions

resident as the access decoupled machine.

2



In answer to our question, we believe that an access decoupled machine can be viewed

as a variant of a microcluster architecture with two separate instruction windows. The

asynchronously executing units, through code partition and dynamic slippage, combines

the bene�ts of reducing window logic complexity with data prefetching.

In this paper we compare the relationship between window size and memory latency

for an access decoupled machine (ADM) and a single window o-o-o superscalar machine

(SWSM). We also evaluate the size of window required by the SWSM to achieve the same

performance as the ADM.

The thesis of this paper is developed in the following way. In section 2 we discuss

previous work on access decoupling. In section 3 and section 4 we outline the ADM and

SWSM, respectively. In section 5 we outline the memory system used for both architec-

tures. In section 6 we discuss the notion of the e�ective single window size (ESWS) to

help explain some of our �ndings. In section 7 we describe our simulation technique and

the experimental benchmark programs. In section 8 we present the results of our work.

Finally in section 9 we draw together our �ndings and suggest avenues for future work in

this area.

2 Background

Access decoupling is an asynchronous data prefetching technique that tries to hide memory

latency by overlapping computation and memory access operations. Central to all de-

coupled machines [1, 6, 11, 17] is an architecturally visible address unit (AU) and data

unit (DU); these units are responsible for performing, respectively, the memory accesses

and data computations in a program. They each have their own program counter allowing

the AU to run ahead of the DU. The degree to which the AU is ahead of the DU is called

the slippage. The units communicate with each other and with memory via queues.

The early decoupled machines like the ZS-1 [6] and PIPE [11] di�ered in how they split

the instruction stream. The ZS-1 had a single instruction stream with a splitter whereas

PIPE had separate instruction caches for the access and execute unit. The ZS-1, unlike

PIPE, also included a data cache. More recently decoupled machines like the DAE [1],

MISC [15] and ACRI [3] have appeared. To increase slippage DAE includes specialised

hardware for e�cient address generation. This hardware is e�ective at reducing DU stall

time and increasing cache utilisation. The MISC [15] architecture, derived from PIPE,

has four asynchronous units each with their own instruction cache, but a common data

cache. The ACRI machine included an additional control unit responsible for computing

conditional branches and dispatching instructions to the AU and DU.

Decoupling has gained currency in superscalar architectures like the MIPS R10000 [18].

The R10000 is able to support a decoupled mode of operation through o-o-o execution

and a separate access instruction queue. The R10000 can decouple address and execute

operations even though there is no architecturally visible AU and DU.

3



3 The Access Decoupled Machine (ADM)

The access decoupled machine modelled in our experiments is shown in Figure 1. The

machine is based on previous decoupled architectures like the ZS-1 and PIPE. The machine

consists of two separate out-of-order (o-o-o) superscalar processors, the address unit (AU)

and the data unit (DU), responsible for executing the access and data operations.

Each unit has is own separate instruction window, functional units and register �les.

The units can share results by moving results between register �les. The number of in-

structions issued per cycle is determined by the issue width. We refer to the sum of the

AU and DU issue width as the combined issue width (CIW).

The decoupled memory lies between the AU and DU and the rest of the memory system.

The decoupled memory receives addresses from the AU and sends them to the memory

system. When a referenced value is returned the decoupled memory bu�ers the value

until it is requested by the DU. Requests from the decoupled memory take a single cycle.

AU self loads are executed in a similar way. Previously the decoupled memory has been

implemented through the use of queues [1, 11, 6].

Instruction

Window

Instruction

Window

Function Units + 

Register Files

Function Units + 

Register Files

Issue

Width

Issue

Width

DUAU

Memory System

Decoupled Memory

Bypass

Figure 1: ADM

Function Units + 
Register Files

Issue
Width

Prefetch Buffer

Memory System

Window
Instruction

Figure 2: SWSM

4 The Single Window Superscalar Machine (SWSM)

The SWSM is shown in Figure 2. The architecture is an o-o-o machine with a single

instruction window for reordering operations. In each cycle independent operations which

are ready to execute are issued to the function units. Unlike the ADM the full issue width

is available for issuing instructions every cycle. This means that if the SWSM is able to

guarantee the full issue width is utilised it could outperform the ADM.

There are di�erent types of hardware, software and hybrid schemes for data prefetching.

For SWSM we use a hybrid scheme. Every memory operation takes two instructions, a

prefetch and an access operation. The prefetch instruction pre-loads data into the prefetch

4



bu�er ahead of the access operation. Prefetch operations, unlike software schemes, are

allowed to begin execution as soon as runtime resources allow. Using this scheme we gain

the bene�ts of exact address computation with dynamic execution. The prefetch bu�er is a

fully associative bu�er responsible for storing prefetched data. Requests from the prefetch

bu�er take a 1 cycle.

5 The Memory System

The basic memory system consists of the main memory but may also be composed of �rst

or second level caches. We are not concerned with a detailed simulation of the memory

system; instead we model its execution by considering every access to have a �xed cost.

The �xed cost we refer to as the memory di�erential (MD). The memory di�erential is

the di�erence in time between a register and memory system access. The purpose of all

latency hiding techniques is to eliminate any perceived memory di�erential.

6 The E�ective Single Window (ESW)

An advantage of the ADM is that the dynamic slippage between the window of instructions

on the AU and DU means that the e�ective single window size can be greater than the

sum of the individual units window sizes. Figure 2 illustrates the idea of the ESW. The

diagram shows the streams for the AU, DU and a single instruction stream. In the single

instruction stream the instructions are shown in program order (with later instructions

appearing further down the page) and labelled with the units they execute on in the ADM.

The diagram shows that due to the dynamic slippage between the units, the AU is executing

instruction further into the instruction stream than the DU. In order for a processor with

a single window to have the same instructions resident the minimum size of window must

be as large as the ESW.

7 Benchmark and Simulation Technique

7.1 Simulation Technique

In our experiments we used a technique adapted from work by Petersen [13] and described

in [9]. The technique works by annotating the source code with calls to routines within the

architecture simulator. Shadow variables are inserted into the program to track the earliest

time that program values become available. Each program variable has an associated

shadow variable to track it throughout the execution. Shadow variables are passed as

arguments to the simulator to enable operation start times to be computed. Simulation of

the ADM amd SWSM can then be performed by executing the annotated program.

The bene�t of using this approach is that the program can be simulated at the source

level. This means we can concentrate on the high level semantics of data prefetching

5



Window

DU

AU

AU

AU

AU

AU

AU
AU

AU

DU
DU

DU
DU
DU

DU

DU

DU
DU

DU

DU
DU

AU

AU
AU
AU
AU
AU

DU
DU
DU
DU

AU
DU

Window

DU Instruction

Stream

Single Instruction

Stream

AU Instruction

Stream

Equivalent Single

Window

Figure 3: E�ective Single Window

without bringing in issues of assembly code generation. It allows us to simulate the e�ect of

data dependency techniques, renaming and reordering scope whilst remaining independent

of any particular native code compiler. These issues are not however dealt within the scope

of this paper.

For the ADM partitioning of the code between the AU and DU is performed statically by

the partitioning algorithm in the OCTAVE compiler [14]. This compiler assigns each node

in the data ow graph to one or both units. This information is then used to annotate the

source program. Code expansion can occur because some nodes are annotated to execute

on both units. This means that at execution time some operations will be duplicated. To

remove the e�ects of duplication we execute the same number of operations on the SWSM

and ADM. The code expansion for the 7 programs simulated in our experiments is on

average less than 5.5% (see Table 1). It is therefore believed that code expansion will have

little e�ect on the results reported in this paper. In future work we intend to examine the

e�ect when duplicate operations are removed for the SWSM.

Source level operations are translated at runtime into single instructions for the archi-

tecture simulator. On the ADM loads and Stores are executed as one instruction on each

of the units. On the SWSM loads and stores generate a prefetch and an access operation.

Integer and address computations have a 1 cycle cost. Floating point operations take 5

cycles to complete.

There is no speculative execution but we assume loop closing branches have been re-

moved by optimisations like loop unrolling and branch prediction. Data dependency ana-

lysis is perfect and false dependencies are removed by renaming. The purpose of examining

such an ideal case is to provide the best opportunity for prefetching data, to have high

instruction level parallelism (ILP) and to place the greatest pressure on the latency hiding

mechanism.

We limit the instruction issue width to projected future values. The technique we

6



used to identify optimal con�gurations of AU and DU issue widths is however beyond the

scope of this paper. The con�gurations we discovered to be most suitable are (1,1),(2,3)

and (4,5). The �rst and second value in the brackets being respectively the AU and DU

instruction issue widths. Here we only consider the (4,5) case for the ADM and an issue

width of 9 for the SWSM.

7.2 Benchmark Programs

We chose a selection of 7 scienti�c Fortran programs from the PERFECT club suite [7] as

our benchmark applications. These were chosen because they represent real applications

from the scienti�c community.

Rather than execute each program in full, which would have been prohibitively ex-

pensive, we adopted a sampling technique. We executed each program in full counting

the number of AU, DU and decoupled load operations during �xed intervals throughout

the program. This enabled us to build a run-time pro�le of the operations executed in

each program. From this pro�le we were able to isolate repeating region from which a

representative sample could be identi�ed. It was then possible to arrange for the simulator

to switch on and o� at the beginning and end of these sampled regions. In this way we

were able to simulate selectively without having to simulate the program in its entirety.

We selected benchmarks from the PERFECT club to represent varying degrees of vec-

torisation and also to span known degrees of decoupling. Table 1 shows the seven selected

benchmarks. This table gives the reported proportion of vectorised operations (VO) ob-

tained from [16] and the decoupling e�ciency (DE) obtained from [14]. The other columns

show the number of AU and DU operations, decoupled loads, do loops and while loops

executed in the program. The table also shows the code expansion due to duplication of

operations on the AU and DU.

Program VO DE Operations (10

6

) Expansion Loops (10

3

)

Name (%) (%) AU (%) DU (%) Loads (%) (%) while do

ADM 43 69 36.5 (51) 34.8 (49) 13.6 (19) 6 0.02 1.1

DYFESM 69 77 19.1 (53) 16.8 (47) 10.6 (29) 3 0 1.1

FLO52Q 92 82 28.0 (54) 24.0 (46) 13.9 (27) 3 0 1.0

MDG 88 92 52.5 (54) 44.1 (46) 20.1 (21) 3 0 5.9

QCD2 4 19 52.7 (55) 43.1 (45) 12.7 (13) 12 0 2.8

TRACK 14 14 9.6 (65) 5.2 (35) 3.2 (21.5) 9 8.5 0.7

TRFD 70 99 53.0 (51) 50.4 (49) 31.6 (31) 2 0 2.1

Table 1: Benchmark Programs from PERFECT club suite

7



8 Experimental Results

In the section we present the major �ndings of the paper. All the programs shown in

Table 1 were simulated in our experiments. For the purpose of this paper we have selected

three representative programs that exhibit the range of observed behaviour. The three

selected programs were FLO52Q, MDG and TRACK. Figure 4 shows the latency hiding

e�ectiveness of all seven programs when the window size is unlimited and the memory

di�erential is 60 cycles

1

The latency hiding e�ectiveness (LHE) is de�ned as LHE =

T

perfect

=T

actual

where T

actual

is the execution time for the ADM and T

perfect

is the execution

time for a machine with perfect latency hiding in which each memory access perceives a

single cycle latency. It can be seen there are three bands in which the programs are highly

(80-100%), moderately (40-60%) and poorly (< 40%) e�ective at hiding latency. It can be

seen that the three programs fall within each of the bands.

0

0.2

0.4

0.6

0.8

1

ADM DYFESM FLO52Q MDG QCD2 TRACK TRFD

La
te

nc
y 

H
id

in
g 

E
ffe

ct
iv

en
es

s

 Program 

Latency Hiding Effectiveness MD=60 cycles

Figure 4: Latency Hiding e�ectiveness MD=60 cycles

Figures 5, 6 and 7 show the variation in speedup with window size for the access

decoupled and superscalar architecture when the memory di�erential is 0 and 60 cycles.

When MD is 0 we see that for small window sizes the ADM performs better than the

SWSM with same window size. This is due to the ADM having two windows for reordering

operations compared to one for the SWSM. This means there are fewer resource conicts

for window slots and greater scope for reordering operations. It will also be noticed that

the graphs show the law of diminishing returns for increasing window size; once window

sizes are above 10 instructions, doubling the size does not double the speedup. All the

programs reach a cut-o� point for window sizes between 40 and 80 instructions when the

SWSM performs more e�ectively. This is due the bene�t of the larger instruction issue

1

An MD of 60 was chosen because it is comparable to the cost of a second level cache miss (the pentium

Pro has 50 cycle L2 miss latency[2]) and it assumes a weak memory system capable of capturing no locality.

In practice for a high performance architecture the memory system will be able to reduce the average access

time by using �rst and second level caches.

8



width available to the SWSM. This bene�t is only realised once the instruction window is

large enough to utilise the available issue width.

In Figures 5, 6 and 7 we see that once MD reaches 60 cycles there is no cut-o� point when

the SWSM performs better than the ADM. This results applies even for very large windows

of 100 instruction slots. The di�erence between the performance of the two machines must

be solely due to the more e�ective data prefetching of the ADM. Operations on the SWSM

which on ADM would have been executed on the DU, are causing address computations to

execute later, reducing the pipelining of memory accesses and decreasing the e�ectiveness

of the data prefetching. The di�erence in performance between the two machines is also

dependent on the type of program. For FLO52Q which is highly parallel the gap between

the ADM and SWSM is large. However, for TRACK which has little parallelism there is

little di�erence between the two architectures.

We can state therefore that for all the programs we have simulated the ADM machine

is more e�ective at hiding large memory latencies than the SWSM. The di�erence in

performance is dependent on the parallelism and decoupling in the program. Programs

that decouple well show the largest improvement in performance for the ADM.

In Figures 8, 9 and 10 we show, for a range of memory di�erentials, the required increase

in the SWSM window size to yield the same performance as the ADM. The increase was

derived by projecting from the ADM graph to SWSM graph in Figures 5,6 and 7. The

graphs show the way in which the required increase varies as a function of the memory

latency. It can be seen that as latencies approach 60 cycles the required increase gets larger.

This is solely due to the more e�ective data prefetching of the access decoupled machine.

As the memory latency increases, the DU waits longer for data to arrive and the slippage

between the two units grows. This means conceptually that the e�ective single window

size (see Figure 3) for ADM gets larger. In order for the SWSM to achieve equivalent

performance it requires a correspondingly larger window.

The graphs in Figures 8, 9 and 10 also show that as the ADM window size is increased

the required increase reduces. This is due to the SWSM architecture being able to reorder

operations to a similar degree as the ADM, and also the bene�ts of the larger issue width.

Signi�cantly it can be observed that for a realistic ADM window size of 30 instructions

and a memory latency of 60 cycles, the required increase in window size for equivalent

SWSM performance is dependent on the program but lies between 2.5 to 5 times. Ex-

periments with the other benchmark programs shown in Table 1 have also been found to

fall within this range. Larger windows introduce extra hardware complexity and longer

window logic delays

2

. We can state therefore that the ADM requires smaller instruction

windows and hence simpler window logic.

Having shown that the ADM performs consistently better than the SWSM we now

compare the latency hiding e�ectiveness of the ADM against a perfect latency hiding

technique (one in which all the memory di�erential is hidden). Table 2 shows the measured

LHE for di�erent window sizes when the memory di�erential is 60 cycles.

The results show that when window sizes are small increasing the window size causes

2

In [12] is was shown that delays vary quadratically with window size.

9



0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

Window Size

FLO52Q CIW=9 CL=99

ADM md=0
SWSM md=0
ADM md=60

SWSM md=60

Figure 5: FLO52Q

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

Window Size

MDG CIW=9 CL=99

ADM md=0
SWSM md=0
ADM md=60

SWSM md=60

Figure 6: MDG

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

Window Size

TRACK CIW=9 CL=99

ADM md=0
SWSM md=0
ADM md=60

SWSM md=60

Figure 7: TRACK

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100

In
cr

ea
se

 n
ee

de
d 

to
 S

up
er

sc
al

ar
 W

in
do

w

Access Decoupled Window Size

FLO52Q

md=0
md=10
md=20
md=30
md=40
md=50
md=60

Figure 8: FLO52Q

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

In
cr

ea
se

 n
ee

de
d 

to
 S

up
er

sc
al

ar
 W

in
do

w

Access Decoupled Window Size

MDG

md=0
md=10
md=20
md=30
md=40
md=50
md=60

Figure 9: MDG

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

In
cr

ea
se

 n
ee

de
d 

to
 S

up
er

sc
al

ar
 W

in
do

w

Access Decoupled Window Size

TRACK

md=0
md=10
md=20
md=30
md=40
md=50
md=60

Figure 10: TRACK

10



a reduction in the LHE. This is due to the extra parallelism on the DU placing greater

pressure on the memory system. The AU window is not yet large enough allow the AU to

pipeline accesses su�ciently to hide the latency. However there eventually comes a point

when the larger window size allows more operations to execute in parallel and the LHE

starts to improve. For MDG and FLO52Q that point is 40 and 50 instructions respect-

ively. This result suggests that for realistic window sizes (1 to 30 instructions), increasing

the window size will result in the latency hiding mechanism of the ADM performing less

e�ectively. Table 2 also shows even with large window sizes we do not approach the LHE

of an ADM with unlimited resources.

Our �ndings show that for realistic window sizes the ADM can hide latencies better than

SWSM but that as the window size increases its e�ectiveness at hiding latency deteriorates.

This illustrates the tensions that exist between having greater parallelism and the access

decoupling mechanism. As the window size get larger, the instruction level parallelism

increases and the execution times fall. However the extra parallelism places greater pressure

on the decoupling mechanism resulting in a decrease in LHE. The result is that more of

the critical path time is now composed of the memory di�erential. There comes a point

however, when the AU window is large enough to compensate for the extra parallelism on

the DU, and more address operations can be pipelined to hide the latency.

In the short to medium term high performance architectures will have window sizes in

the range that shows a reduction in the LHE. In future work we will investigate mechanisms

to improve the latency hiding of the ADM. One possibility is a bypass mechanism which

captures the temporal locality exposed by decoupling [10].

Program ADM Window Size

1 1 10 20 30 40 50 60 100

ADM 1.00 0.72 0.51 0.43 0.41 0.39 0.38 0.38 0.39

DYFESM 0.87 0.81 0.59 0.53 0.49 0.48 0.50 0.49 0.49

FLO52Q 0.97 0.82 0.79 0.74 0.72 0.70 0.70 0.71 0.73

MDG 0.48 0.56 0.41 0.33 0.32 0.32 0.34 0.36 0.40

QCD2 0.55 0.76 0.54 0.46 0.44 0.43 0.43 0.43 0.44

TRACK 0.22 0.45 0.25 0.23 0.23 0.23 0.22 0.22 0.22

TRFD 1.00 0.90 0.72 0.53 0.43 0.41 0.42 0.43 0.45

Table 2: Latency Hiding E�ectiveness for MD=60 cycles

9 Conclusion and Future Work

This paper has focused on two objectives in the design space of future microprocessors; the

need to hide large memory latencies and the need to reduce the complexity of window issue

logic. We have investigated the use of data prefetching on an access decoupled machine

and a single window o-o-o superscalar architecture.

11



In this paper we have examined the relationship between memory latency, window size

and speedup for the two architectures. In order to remove the impact of other architec-

tural issues we have assumed an idealistic environment. This environment provides good

conditions for data prefetching, high levels of ILP and places the greatest pressure on the

latency hiding mechanism.

We have found that the ADM is more e�ective at hiding memory latency than the

SWSM. For large memory di�erentials (60 cycles) we have found that even for large

window sizes of 100 instructions, the ADM consistently performs better than the SWSM.

Our results have also shown that to achieve the same speedup as an ADM the SWSM needs

a window size between 2.5 to 5 larger. The increase in window size required to achieve

equivalent performance on the SWSM was also found to increase with larger latencies.

To explain some of our �ndings we have introduced the concept of the e�ective single

window. The ESW conceptually illustrates how the ADM is able to perform better than

an architecture with twice the size of instruction window.

Our results have also shown how the latency hiding e�ectiveness of the ADM decreases

as the window size increases to 50 instructions. Though the speedup did increase with

larger window size the ADM was not found to be as e�ective at hiding latency. However

when windows were greater than 50 instructions the LHE was found to improve. This

behaviour illustrates the tensions that exist between higher ILP and the access decoupling

mechanism.

This paper has shown that access decoupling can combine the bene�ts of latency hiding

with simplifying the window logic complexity. We would conclude therefore that there is a

need for further work in the use of access decoupling. In future work we will examine the

e�ects of code expansion on the ADM and SWSM. We will also compare the di�erence

in performance between a static and dynamic partition of the code on the ADM. Finally,

inorder to improve the LHE of the ADM we will investigate a mechanism for capturing the

temporal locality exposed by decoupling.

References

[1] A. Berrached, L.D. Coraor, and P.T. Hulina. A Decoupled Access/Execute Architec-

ture for E�cient Access of Structured Data. In Proc. of the 26th Hawai Int. Conf. on

System Sciences, volume 1, pages 438{47, Los Alamitos, CA, USA, Jan 1993. IEEE.

[2] D. Bhandarkar and J. Ding. Performance Characterisation of the Pentium Pro Pro-

cessor. In Proceedings of the 3rd Int. Symp. on High Performance Computer Archi-

tecture, San Antonio, Texas, USA., Feb. 1997. IEEE.

[3] P. Bird, A. Rawsthorne, and N.P. Topham. The E�ectiveness of Decoupling. In Proc.

Int. Conf. on Supercomputing, Tokyo, Japan, May 1993.

12



[4] D. Callahan, K. Kennedy, and A. Porter�eld. Software Prefetching. In 4th Annual

Symposium on Parallel Languages and Operating Systems, pages 40{52, Santa Clara,

California, April 1991.

[5] Tzi cker Chiueh. Sunder : A Programmable Hardware Prefetch Architecture for

Numerical Loops. In Proc. Supercomputing '94, pages 488{497, Los Alamitos, CA,

USA, Nov 1994. IEEE Comput. Soc., ACM , SIAM, IEEE Comput. Soc. Press.

[6] J.E. Smith et al. The ZS-1 Central Processor. In Proc. of the 2nd Int. Conf. on

Architectural Support for Programming Languages and Operating Systems, October

1987.

[7] M. Berry et al. The Perfect Club Benchmarks, E�ective Performance Evaluation of

Supercomputers. Techreport 827, CSRD, University of Illinois, Urbana-Chmpaign,

Urbana, Illinois., May 1989.

[8] J.W.C. FU and J.H. Patel. Data prefetching strategies for vector cache memories. In

Proceedings. The �fth International Parallel Processing Symposium, pages 555{560,

Los Alamitos, CA, USA, April-May 1991. IEEE Computer Society Press.

[9] G. Jones. Evaluating the Limits of Access Decoupling using the Latency Hiding Model.

Technical report, Edinburgh University, 1997.

[10] G.P. Jones and N.P. Topham. A Limitation Study into Access Decoupling. In

C. Lengauer, M. Griebl, and S. Gorlatch, editors, Euro-Par'97 Parallel Processing,

pages 1102{1111. University of Passau, Germany, Springer, Aug. 1997.

[11] M.K.Farrens and A.R.Pleszkun. Implementation of the PIPE Processor. IEEE Com-

puter, pages 65{70, Jan 1991.

[12] S. Palacharla, N.P. Jouppi, and J.E. Smith. Complexity-E�ective Superscalar Pro-

cessors. In 24th Annual International Symposium on Computer Architecture, 1997.

[13] P.M. Petersen. and D.A. Padua. Evaluation of Parallelsing Compilers. CSRD 1279,

Center for Supercomputing Research and Development., University of Illinois at

Champaign-Urbana, Urbana, Illinois, 61801, 1992.

[14] N.P. Topham, A. Rawsthorne, C.E. McLean, M.J.R.G. Mewissen, and P.Bird. Com-

piling and Optimising for Decoupled Architectures. In Proc. of Supercomputing '95,

San Diego, Dec. 1995. ACM press.

[15] G. Tyson, M. Farrens, and A.R. Pleszkun. MISC : A Mutiple Instruction Stream

Computer. In Proc. of the 25th Ann. Sym. on Microarchitecture, Portland, Oregon,

Dec 1-4 1992.

13



[16] S. Vajapeyam, G.S. Sohi, and W-C Hsu. An Empirical Study of the CRAY YMP

Processor using the PERFECT Club Benchmarks. In Proceedings of the 1991 ACM

Int. Conf. on Supercomputing, pages 170{179, New York, 1991. ACM, ACM press.

[17] Wm A. Wulf. An Evaluation of the WM Architecture. In Proc. Int. Symp. on Com-

puter Architecture, Gold Coast, Australia, May 1992.

[18] K.C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE micro, 16(2):28{

41, April 1996.

14


