
Computer Systems Group

T
H

E

U
N I V E R

S
I

T
Y

O
F

E
D

I N B U

R
G

H

Predicting Future Page Access by Analysing Object
Relationships

by

Nils Knafla
E-mail: nk@dcs.ed.ac.uk

CSG Report Series ECS–CSG–35–97

Computer Systems Group December 1997

Department of Computer Science
University of Edinburgh
The King’s Buildings
Edinburgh EH9 3JZ

Predicting Future Page Access by Analysing

Object Relationships

Nils Knaa

E-mail: nk@dcs.ed.ac.uk

Technical Report ECS{CSG{35{97

Department of Computer Science

University of Edinburgh

December 5, 1997

Abstract

In this report we present a new approach to predicting page access probability

by considering the structure of the relationships between objects. Database

objects and their relationships to other objects are modelled by a discrete-

time Markov Chain. We present two approaches to compute the page access

probability: (a) Using Hitting Times and Absorption Probabilities and (b)

Using the Chapman-Kolmogorov Equations. If the probability of a page is

higher than a threshold de�ned by cost/bene�t parameters then the page is a

candidate for prefetching. To determine the prefetching threshold we consider

various cost parameters to compare the bene�t of a correct prefetch with the

cost of an incorrect prefetch.

Keywords: prefetching, object-oriented databases, discrete-timeMarkov Chains,

hitting times and absorption probabilities, EXODUS, high performance object

stores, persistence, client/server computing, disk storage management

1 Introduction

1.1 Performance Bottlenecks of Object-Oriented Databases

In most commercial object-oriented database management systems (OODBMS) the data-

base client requests pages from the server. The server retrieves the page from its local disk

and sends it to the client. The client stores the page in its bu�er pool and the database ap-

plication can work with the objects in the page. This page fetch is an expensive operation.

In �g. 1 we give an example to show the most expensive elements of such a page fetch (total

cost about 8748 �s). The results were obtained by timing the EXODUS storage manager

(ESM) [2]; details about our computing environment can be found in section 4.2.

1

852

1046

442

1327

1053

529

1296

0 200 400 600 800 1000 1200 1400

Elapsed time (microseconds)

Buffer management (C,S)

Auditing (C,S)

Disk Read (S)

IPC with Disk process (S)

Send page from Server (S) to (C)

Network Transfer

Receive page at Client (C)

Figure 1: Expensive components of a page fetch

A major cost factor of the page fetch is the cost for sending and receiving a page (setup

costs) via the network. The network transfer cost is low, compared with the setup costs.

All elapsed times of the cost components (apart from network transfer and disk read)

are dependent on the processor speed. In all our tests we used a 50 MHZ machine and

therefore these costs could be reduced using up-to-date processors by a factor of 6. Then

the network transfer and disk access would emerge as the major bottleneck. The seek cost

is the most expensive part of the disk access but does not appear in �g. 1 because we read

all pages sequentially from disk.

1

This test was made with just one client at the server and the machine workload was low.

1

1.2 Approaches to Improve Database Performance

To reduce the high cost of a page fetch and disk latencies many researchers developed pre-

fetching techniques to overcome this problem. In OODBMSs Chang and Katz [3] predict

future accesses by hints from the data semantics in terms of inheritance and structural

relationships. Cheng and Hurson [4] extended this work by adding multiple hints, a pre-

fetching depth and physical storage considerations. A complex assembly operator to load

component objects recursively in advance was introduced by Keller et al. [9]. In the

Fido system [15], the prefetching technique employs an associative memory to recognize

access patterns within a context over time. In training mode, object access information is

gathered and stored with a nearest-neighbor associative memory. In prediction mode, this

information is used to recognize previously encountered situations. Gerlhof [6] prefetches

the precomputed page answer of an operation, i.e. the identi�ers of all pages that were ac-

cessed during the execution of an operation. In Thor [5] each fetch request from the client

causes the server to select a prefetch group containing the object requested and possibly

some other objects.

In some research work the future access was predicted by probability models which have

their values from past accesses. In [7] a probability graph was used to predict the future

�le access, i.e. the probability that one �le will be opened after another. In the World

Wide Web [1] Bestavros speculated about document accesses based upon their document

interdependency probabilities. Grimsrud et al. [8] keep a record of the disk clusters which

were accessed immediately after another cluster with an associated weight for the access

probability. An interesting study to preload documents from tertiary storage was made by

Kraiss [13]. This work is probably most related to our work because it uses a continuous-

time Markov-chain model to predict the document access. The main di�erence to our work

is that they predict the documents access whereas we predict the future page access based

on object relationships.

The new approach of our work is the computation of the page access probability con-

sidering the structure of the relationships between objects. Database objects and their

relationships to other objects are modelled by a discrete-time Markov Chain. We present

two approaches to compute the page access probability:

(a) Using Hitting Times and Absorption Probabilities

(b) Using the Chapman-Kolmogorov Equations.

If the probability of a page is higher than a threshold de�ned by cost/bene�t parameters

then the page is a candidate for prefetching. To determine the prefetching threshold we

consider various cost parameters to compare the bene�t of a correct prefetch with the cost

of an incorrect prefetch.

The model for predicting the page access is explained in section 2. In this section we will

give an introduction to the model de�nitions, explain the decision process for prefetching

and the computation of a page probability. In section 3 we present the cost parameters

for a prefetch operation in a client-server architecture. Primary results about the cost

2

parameters are showed in section 4. Finally, in section 5 we conclude our work and give

an outlook to future work.

2 The Prediction Model

2.1 Model De�nitions

In an object-oriented database system objects have relationships with other objects. Let O

denote the set of objects in the database and let R � O� [0; 1]�O denote the set of object

relationships between objects, along with a weight for each such relationship. The weight

denotes the probability that we traverse from one object to another. Further, let o

i

2 O

be the current object that the database client is processing. Let o

j

2 O and x 2 [0; 1]. If

(o

i

; x; o

j

) 2 R then we say that o

i

x

�! o

j

denoting the probability x that we go from o

i

to

o

j

.

Let PG be the set of database pages and pg

i

2 PG the page that contains the object

o

i

, i.e. the page on which the client is currently processing. A page pg

j

is said not to be

resident in the client bu�er pool BP , with BP � PG, if pg

j

2 PGnBP . The condition

for an object relationship is 8o

i

2 O;

P

fx : 9o

j

2 O : (o

i

; x; o

j

) 2 Rg = 1, i.e. the sum of

the probabilities associated with the emerging arcs from o

i

must add up to 1. For the case

when the traversal terminates at an object we introduce an arti�cial object o

halt

2 O such

that o

i

x

�! o

halt

denotes the probability x that the traversal will be terminated at object

o

i

.

2.2 Prefetch Decision Model

In our previous work ([10], [11], [12]) we used a minimal Prefetch Object Distance (POD)

to start the prefetch operation d object processing units (steps) before application access.

We denote a Prefetch Start Object (PSO) as an object that when encountered will start

the prefetch operation. The advantage of this approach is that the savings in elapsed time

are high but the probability that the traversal will be from the PSO to an object in a

non-resident page could be low. Prefetching a page less than d objects before access has

certainly a lower saving but the probability that we traverse from the current object to an

object in a non-resident page could be higher.

Suppose i 2 O is the current object and � 2 PGnBF is a page then we will denote by

P

i;�;

the probability that starting in i, we hit

2

page � (de�nition in section 2.3). Also let

CIP be the Cost of an Incorrect Prefetch (de�nition in section 3.1) and BCP

(d)

the Bene�t

of a Correct Prefetch (de�nition in section 3.2). The decision whether to prefetch a page

is made by the following constraint:

P

i;�

>

CIP

BCP

(d)

+CIP

(1)

2

To hit a page means the traversal from a current object to an object in another page.

3

To explain this equation it was derived from:

P

i;�

�BCP

(d)

> (1�P

i;�

) � CIP (2)

If the probability that the page will be accessed multiplied by the bene�t of the page

is greater than the probability that the page is not accessed multiplied by the cost of an

incorrect prefetch then we will prefetch the page. BCP

(d)

is strongly dependent on the

POD parameter d. The theoretical optimal POD is computed by dividing the cost of

a page fetch by the cost of object processing (see [10], [11]). The constraint (1) is the

minimum condition that has to be ful�lled. In addition we use a probability threshold

parameter.

Let O

NR

(O

NR

� O and O

NR

6� PGnBP) be the set of objects not in the bu�er pool to

which there are direct relationships from a page p

i

. For the purpose of our model for every

element o

k

(o

k

2 O

NR

) we check constraint (1) for every object o

i

which has path to o

k

in

a distance � d. There may be a number of paths from o

i

to o

k

that is exponential in d.

However, as we shall see, we do not have to examine each path individually. If constraint

(1) is ful�lled then we de�ne object o

i

as a PSO. This whole identi�cation process is made

o�-line and only the PSO information is used at run time. After the analysing process we

decide whether to prefetch from the database. If the estimated bene�ts outweigh the �xed

costs (thread and socket creation) and variable costs (e.g. prediction costs for phases with

no prefetching) then we will do prefetching.

2.3 Computation of the Page Access Probability

To compute the probability that a page will be hit we would like to implement two methods

and compare their computational overhead and accuracy. In section 2.3.1 we explain the

use of hitting times and absorption probabilities and in section 2.3.2 we explain how we

could use the Chapman-Kolmogorov equations.

2.3.1 Using Hitting Times and Absorption Probabilities

A discrete-time Markov chain is a stochastic process which is the simplest generalisation

of a sequence of independent random variables. A Markov chain is a random sequence in

which the dependency of the successive events goes back only one unit in time. In other

words, the future probabilistic behaviour of the process depends only on the present state

of the process and is not inuenced by its past history.

Let (X

n

)

n�0

be a discrete-time Markov chain with transition matrix P . The hitting

time of a page � is the random variable H

�

:
! f0; 1; 2; :::g [f1g given by

H

�

(!) = inffn � 0 : X

n

(!) 2 �g (3)

4

where we agree that the in�mum of the empty set ; is 1. H

�

(!) is one state (i.e.

object) of � to be hitted at time !. The probability starting in object i that (X

n

)

n�0

ever

hits � is then

h

�

i

= P

i

(H

�

<1): (4)

When � is a closed class

3

, h

�

i

is called the absorption probability but in our environment

we compute in most cases the probability to transient states. The mean time taken for

(X

n

)

n�0

to reach � is given by

k

�

i

= E

i

(H

�

) =

X

n<1

nP(H

�

= n) +1P(H

�

=1) (5)

The mean hitting time and the hitting probability can be calculated by linear equations.

With Theorem 1 we are able to establish the equations for the hitting probability.

Theorem 1 The vector of hitting probabilities h

�

= (h

�

i

: i 2 O) is the minimal non-

negative solution to the system of linear equations

(

h

�

i

= 1 for i 2 �

h

�

i

=

P

j2O

p

ij

h

�

j

for i =2 �

(6)

The mean hitting time can also be calculated by linear equations:

Theorem 2 The vector of mean hitting times k

�

= (k

�

: i 2 O) is the minimal non-

negative solution to the system of linear equations

(

k

�

i

= 0 for i 2 �

k

�

i

= 1 +

P

j =2�

p

ij

k

�

j

for i =2 �

(7)

The proof for both theorems can be found in [14]. We solve these equations either

by Gaussian elimination method Gauss-Jordan or Gauss-Seidel dependent on the number

of objects. In addition we de�ned the two following rules describing the adaption to our

environment:

Rule 1: Let � � O be the set of states that have a path to a state in a page �. For the

setting of the equations to calculate the mean hitting time (according to Theorem

1) and the hitting probability (according to Theorem 2) we only consider states that

are elements of � (o

i

2 �).

3

We say that a class C is closed if i 2 C; i ! j imply j 2 C. Thus a closed class is one from which

there is no escape.

5

Rule 2: To calculate the mean time that we get absorbed in a page � we have to consider

only transitions from states in � to states in �. If the condition 8o

i

2 O;

P

fx : 9o

j

2

O : (o

i

; x; o

j

) 2 Rg = 1 is not ful�lled anymore because a state is not in � then we

have to recalculated the probability transitions. The new probability a values for x

0

i

is computed by

x

0

i

=

x

i

P

m

j=1

x

j

(8)

where we only consider transitions x

j

to objects in �.

Example: Suppose we have o

t

; o

u

; o

v

; o

w

2 O and x

1

; x

2

; x

3

2 [0; 1] with the transi-

tions o

t

x

1

�! o

u

, o

t

x

2

�! o

v

and o

t

x

3

�! o

w

. Let o

t

; o

u

; o

v

2 � and o

w

=2 �. Then the

values for x

0

1

and x

0

2

are computed by x

0

1

= x

1

=(x

1

+ x

2

) and for x

0

2

= x

2

=(x

1

+ x

2

).

Fig. 2 depicts a simple example of objects that are resident in a page with references to

other objects. The probability to hit page 2 starting in object o

1

is computed as follows:

Page 3

Page 1 Page 2

0.5

0.25

0.75

0.25

0.750.25

0.25

6O

O4

O5

O

O2

O1

3

Figure 2: Probability graph

h

5

= 1

h

4

= 1

h

3

= 0:25h

5

h

2

= 0:75h

4

h

1

= 0:5h

2

+ 0:25h

3

6

As a result the access probability of page 2 is 0:4375 and of page 3 0.5625. The mean

time to access page 2 starting in o

1

is then computed by the following equations:

k

5

= 0

k

4

= 0

k

3

= 1 + 1k

5

k

2

= 1 + 1k

4

k

1

= 1 +

2

3

k

2

+

1

3

k

3

The mean time to access page 2 from o

1

is 2 and to page 3 1.75. The transition values

for equations k

1

to k

3

are obtained according to rule 2.

2.3.2 Using the Chapman-Kolmogorov Equations

The page access probability can also be computed with the Chapman-Kolmogorov equa-

tions. Let i be the current object and j (j 2 O) an object in another page then the

probability that we will be in object j after n+m steps is computed by the equations:

P

n+m

ij

=

P

1

k=0

P

n

ik

P

m

kj

for all n;m � 0; all i; j (9)

These equations can be solved by matrix multiplications. To compute the probability

to hit the page � we add up all probability values for objects in �

P

�

i

=

P

1

n=0

P

o

j

2�

P

n

ij

(10)

The advantage of using approach 2.3.1 is that we are able to setup the equations with

a limited number of objects, whereas in approach 2.3.2 we have to perform a matrix mul-

tiplication for all objects in the database. Another advantage of 2.3.1 is that we compute

exactly one mean hitting time from a current object to another page.

3 The Cost - Bene�t Model

3.1 The Cost of an Incorrect Prefetch Request

Table 1 shows the cost parameters which inuence the cost of an incorrect prefetch. CIP

is then computed by:

CIP = C

CS

+ C

M

+ C

PW

+ C

R

(11)

7

Parameter Description

C

CP

This is the cost for client processing which includes Auditing, Bu�er Man-

agement (except C

R

and C

RB

), IO, Concurrency Control, Network Pro-

cessing, Memory Management.

C

CS

Increased cost of context switches due to prefetch threads. The number of

prefetch threads is � the number of available processors. Let C

CS(1)

be the

context switch cost for one prefetch thread and let �

(s)

be the scale-factor

dependent on the number of SupportThreads s.

C

CS

= C

CS(1)

� �

(s)

C

CV

Cost for the DemandThread to wait on a condition variable (only when

the DemandThread stalls for the prefetched page).

C

M

Additional waiting time and processing cost for the DemandThread to

acquire and release mutexes. Let C

CM(1)

be the mutex cost for one prefetch

thread.

C

CM

= C

CM(1)

� �

(s)

C

PR

Cost for predicting the future access.

C

PW

The cost for waiting until a page request arrives at the client. Let C

PW (1)

be the waiting cost for a request to the server with 1 client and �

(c)

a scale-

factor for the delay of a page fetch dependent on the number of clients c

at the server.

C

PW

= C

PW (1)

� �

(c)

C

R

The cost for the replacement of a page with an incorrect prefetched page.

The replaced page may be accessed again.

C

R

=

(

C

P

if page is accessed again

0 otherwise

C

RB

The cost for the replacement of a page with a correct prefetched page. The

replaced page may be accessed before the prefetched page.

C

RB

=

(

C

P

if replaced page is accessed before prefetched page

0 otherwise

B

P

Let C

O

the cost of processing one object; recall that d is the prefetch

distance parameter.

B

P

=

(

C

PW

+ C

CP

if prefetched page is resident on access

C

O

� d otherwise

Table 1: Cost/Bene�t parameters description

8

3.2 The Bene�t of a Correct Prefetch Request

The maximum saving for a prefetch can be achieved when the prefetched page arrives at

the client before application access but otherwise there will be a lower saving. The bene�t

BCP is dependent on the amount of savings and the cost that is incurred:

BCP = B

P

� C

CS

� C

CV

�C

M

� C

PR

� C

RB

(12)

3.3 Cost and Bene�t with Multiple SupportThreads

A PrefetchThread is responsible for predicting future access and for prefetching. A Support-

Thread is only responsible for prefetching pages and it is managed by the PrefetchThread.

We use one PrefetchThread and multiple SupportThreads (if necessary). Every additional

SupportThread induces a higher value for C

CS

; C

M

; C

PW

which a�ects CIP and BCP .

To compute the value of C

CS

; C

M

we use the scale factor �

(s)

which is dependent on the

number of SupportThreads s.

3.4 Cost and Bene�t of a Multiple-Page-Request

If we predict multiple page to prefetch according to constraint (1) we could demand them

by a single request from the server. We would order the requests according to their access

probability and time constraints. The server would read the pages from disk and send

them back to the client either (a) separately when time constraints are tight or (b) in a

batch if time is not a problem.

A Multiple-Page-Request has the advantage that the processing cost on the client and

the server is lower (which reduces C

CP

and C

PW

) because some functions have to be

executed only once. It also reduces the network costs (which a�ects C

PW

). The costs of

thread management (C

M

and C

CS

) are also lower because multiple pages are requested by

just one thread.

4 Implementation

4.1 The Client-Server Architecture

We incorporated prefetch threads into the client ESM. Each prefetch thread has an asso-

ciated socket to communicate with the server. The server serves each request sequentially.

A more detailed description of the prefetching architecture can be found in [11].

4.2 Performance Parameters

In table 2 we give a speci�cation of the computers used in our experiments. The Sun Fast

Ethernet network is running at 100 Mb/sec. The performance of the disk controller is

presented in table 3. Please note that all results are mean values from repeated tests.

9

Table 2: Computer performance speci�cation

Parameter Server Client

SPARCstation 20 Model 502 10 Model 514

Main Memory 512 MB 224 MB

Virtual Memory 491 MB 657 MB

Number of CPUs 2 4

Cycle speed 50 MHz 50 MHz

Table 3: Disk controller performance

Parameter Disk controller

External Transfer Rate 20 Mbytes/sec

Average Seek (Read/Write) 9/10.5 msec

Average Latency 5.54 msec

4.3 Primary Results

In this section we present the �rst results that we obtained from timing ESM. To compute

the POD we divide the cost of a page fetch by the cost of object preparation (806 �s). The

cost of a page fetch is dependent on many factors. Its cost is determined by the number

of clients connected to the server, the number of prefetch threads at the client and the

interference of requests. We measure the cost of a Demand Fetch (DF) and Prefetch Fetch

(PF) in four di�erent applications:

1. Demand: An application without any prefetching.

2. PC: A prefetch application with 100% accuracy, so that there are no Demand re-

quests.

3. PI: A prefetch application with 0% accuracy, so that there are Demand and prefetch

requests which do not interfere.

4. PI Int: A prefetch application with 0% accuracy, so that there are Demand requests

and the incorrect prefetch requests which are started at the same time as the Demand

request.

Table 4 presents the result of this test. At the time of the test there was no other

client connected to the server. The result shows that the number of active threads and

interference makes a di�erence to the page fetch cost.

Prefetching can decrease elapsed time if prediction is accurate but otherwise prefetching

can slow down performance drastically. We created a benchmark in which 100 pages were

10

Table 4: Page fetch cost

Application type: Demand DF PC PF PI DF PI PF PI Int DF PI Int PF

Elapsed time (�s): 7943 7936 8092 8084 9170 9160

accessed sequentially. Fig. 3 presents the result of the benchmark. Incorrect is a prefetching

application which in addition prefetches 100 pages incorrectly and Incorrect Int does the

same with the di�erence that the prefetch is started at the same time as the Demand

read. The POD applications show the bene�t of prefetch dependent on the prefetch object

distance ('1','2', etc in POD 1, POD 2 denotes the distance). Both incorrect versions

increase performance badly. We have to do more performance measurements to identify the

main costs for this decrease. Prefetching in a distance up to 3 also decreases performance.

The best result is achieved at a distance 10 (optimal POD) or after.

9.2

9.22

9.26

9.35

9.45

9.52

9.66

9.7

9.82

9.84

9.68
11.11

11.23

9 9.5 10 10.5 11 11.5

Elapsed time (seconds)

POD 10

POD 9

POD 8

POD 7

POD 6

POD 5

POD 4

POD 3

POD 2

POD 1

Demand

Incorrect

Incorrect Int

Figure 3: Demand and prefetching applications

To decide whether it is useful to fetch a set of pages by a Multiple-Page-Request we

timed a disk read of a set of pages and the cost of sending pages over the network. In

the network test we measured the time from sending a server request to the receipt of the

page. Table 5 shows the result of the test and proves that it is quicker to send a batch of

pages instead of single pages.

In the disk test we read a number of pages with one request. The result of this test

(table 6) is di�erent to the network test. Surprisingly, the cost of reading a set of pages is

higher than reading these pages by a single request.

11

Table 5: Cost of sending n K-Bytes via the network

K-Bytes: 1 8 16 24 32

Elapsed time (�s): 1912 2520 3411 4471 5573

Table 6: Cost of reading n 8 KB pages from disk in one request

Number of disk reads: 1 2 3 4

Elapsed time (�s): 238 620 954 1236

5 Conclusions and Future Work

In this report we presented a technique to compute the page access probability. The

database client navigates through the object graph. From the current position of the client

we compute the probability of every adjacent page from the current. If a page is not

resident and the page probability is higher than speci�c threshold, determined by cost and

bene�t parameter, then the page is candidate for prefetching.

Database objects and their relationships to other objects are modelled by a discrete-time

Markov Chain. We presented two approaches to compute the page access probability: (a)

Using Hitting Times and Absorption Probabilities and (b) Using the Chapman-Kolmogorov

Equations. In the future we will compare the computational overhead of both approaches.

We evaluate the prediction accuracy by simulating the object navigation.

Acknowledgments

We would like to thank Graham Clark, Isabel Rojas-Mujica, Peter Thanisch and Nigel

Thomas from our department for all their help.

References

[1] A. Bestavros. Using Speculation to Reduce Server Load and Service Time on the

WWW. In Proc. of the 1995 ACM CIKM Int. Conf. on Information and Knowledge

Management., pages 403{410. Association for Computing Machinery, December 1995.

[2] M.J. Carey, D.J. DeWitt, G. Graefe, D.M. Haight, J.E. Richardson, D.T. Schuh,

E.J. Shekita, and S.L. Vandenberg. The EXODUS Extensible DBMS Project: An

Overview. In S. Zdonik and D. Maier, editors, Readings in Object-Oriented Database

Systems, pages 474{499. Morgan Kaufmann, 1990.

[3] E.E. Chang and R.H. Katz. Exploiting Inheritance and Structure Semantics for Ef-

fective Clustering and Bu�ering in an Object-Oriented DBMS. In Proc. of the ACM

12

SIGMOD Conference on the Management of Data, pages 348{357, Portland, Oregon,

June 1989.

[4] J.R. Cheng and A.R. Hurson. On the Performance Issues of Object-Based Bu�ering.

In Proc. First Int. Conf. on Parallel and Distributed Information System, pages 30{37,

Miami Beach, Florida, December 1991.

[5] M.S. Day. Client Cache Management in a Distributed Object Database. PhD thesis,

Massachusetts Institute of Technology, Laboratory for Computer Science, 1995.

[6] C.A. Gerlhof and A. Kemper. Prefetch Support Relations in Object Bases. In Proc.

of the Sixth Int. Workshop on Persistent Object Systems, pages 115{126, Tarascon,

Provence, France, September 1994.

[7] J. Gri�oen and R. Appleton. Improving File System Performance via Predictive

Caching. In Parallel and Distributed Computing Systems, pages 165{170, Orlando,

Florida, September 1995.

[8] K.S. Grimsrud, J.K. Archibald, and B.E. Nelson. Multiple Prefetch Adaptive Disk

Caching. IEEE Knowledge and Data Engineering, 5(1):88{103, February 1993.

[9] T. Keller, G. Graefe, and D. Maier. E�cient Assembly of Complex Objects. In Proc.

of the ACM SIGMOD Int. Conf. on Management of Data, pages 148{157, Denver,

USA, May 1991.

[10] N. Knaa. A Prefetching Technique for Object-Oriented Databases. In C. Small,

P. Douglas, R. Johnson, P. King, and N. Martin, editors, Advances in Databases, 15th

British National Conference on Databases, BNCOD 15, Lecture Notes in Computer

Science, pages 154{168, London, United Kingdom, July 1997. Springer-Verlag.

[11] N. Knaa. Speed Up Your Database Client with Adaptable Multithreaded Prefetching.

In Proc. of the Sixth IEEE International Symposium on High Performance Distributed

Computing, pages 102{111, Portland, Oregon, August 1997. IEEE Computer Society

Press.

[12] N. Knaa. An Adaptable Multithreaded Prefetching Technique for Client-Server Ob-

ject Bases. Cluster Computing, 1(1), 1998.

[13] A. Kraiss and G. Weikum. Vertical Data Migration in Large Near-Line Document

Archives Based on Markov-Chain Predictions. In Proc. of the 23rd Int. Conf. on Very

Large Databases, pages 246{255, Athens, Greece, August 1997.

[14] J.R. Norris. Markov Chains. Cambridge series on statistical and probabilistic math-

ematics. Cambridge Uni Press, 1997.

[15] M. Palmer and S.B. Zdonik. Fido: A Cache That Learns to Fetch. In Proc. of the 17th

Int. Conf. on Very Large Data Bases, pages 255{264, Barcelona, Spain, September

1991.

13

