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Abstract

For the appropiate analysis and simulation of various types of Petri nets,

modelling real systems or applications, the assistance of computer packages

or tools is indispensable. This paper provides an brief introduction to the

use of Stochastic Petri Nets packages, speci�cally GreatSPN1.6, DSPNex-

press1.2 and SPNPv3.Initially a review of the main concepts employed in

the analysis of Stochastic Timed Petri Nets is given. It is expected that the

reader will have a general knowledge of Petri Nets and that this would act

as a revision and as the introduction to rather more complex concepts. The

idea of this section is to supply a theoretical background to the facilities

o�ered by the packages that are analysed in this paper. For each package

we describe its main features, what it o�ers and how its implemented. As a

guide for the selection of which package is more appropiate for the readers

particular needs a comparison section between the packages is o�ered. The

information supplied for each package reviewed, has come from both the

experience gained using the packages and from the existing documentation

for each one.
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1 Stochastic Petri Nets Concepts

A Petri net (PN) ([25], [23]) can be seen as a directed bipartite graph whose set of

nodes V can be partitioned into two disjoint sets, places (P) and transitions (T),

V = P [ T . Arcs can only go from places to transitions (input arcs, I) or from

transitions to places (output arcs, O). Multiple arcs from places to transitions or

viceversa are allowed, speci�ed by placing the multiplicity of the arc a (m(a)�N

+

)

beside it. There is also a third set of arcs, called inhibiting arcs, (H), which connect

places with transitions. In our example (Fig. 1)
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2
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Each place can have a number of tokens associated with it. A function

M: P! N

+

is said to be a marking, assigning for each place a certain number of

tokens. Each marking can be considered as representing a state of the PN. M

o

is the initial marking of a net, representing the initial number of tokens that is

associated with each place in the net. A marking can also be represented as a

multiset of places, where the number of occurrences of the place in the multiset

corresponds to the number of tokens in that place. In the example shown in Fig.

1,

M

o

(p

1

) = 1; M

o

(p

2

) = 2; M

o

(p

3

) = 0 and M

o

(p

4

) = 0

and if represented as a multiset,

M

o

= p

1

+ 2p

2

A transition t

k

is said to be enabled if each of its input places has at least as

many tokens as the multiplicity of the input arc from the place to the transition t

k

and if each inhibiting place p

h

of the transition has less tokens than the multiplicity

of the inhibiting arc (p

h

; t

k

). Enabled transitions can �re, leading to a change in

the marking or marking function. This corresponds to the elimination of as many

tokens as the multiplicity of the input arc from each place, and placing as many

tokens as the multiplicity of the output arc in each of its output places. If for every

inhibitent arc to a transition the place of origin of the arc has at least as many
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tokens as the multiplicity of the arc, then the transition is said to be inhibiting

and cannot �re until the condition stated is withdrawn.

A �ring sequence is a sequence of transition �rings. A marking M

j

is said

to be reachable from a marking M

i

if it is obtained by a �ring sequence from M

i

.

The Reachability Set (RS) R(M

o

) of a PN is the set of all markings reachable from

M

o

, including M

o

. The Reachability Graph (RG) G(M

o

) of a PN is the labeled

directed graph whose vertices are the elements of R(M

o

), and whose arcs (M

i

;M

j

)

are labeled k indicating that marking M

j

can be reached from marking M

i

by

�ring transition t

k

(arcs represent a �ring sequence of length 1). It is assumed

that only one transition �ring can lead directly from one marking to another.

t 1 t 2

p1

p3

p2

p4

t 1 t 2
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p4
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22
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a b

Fig. 1 A Petri net. a) is the initial state of the net, b) the state after the �ring of

transition t

2

and c) is the net after the �ring sequence < t

2

; t

1

>
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In our example shown in Fig. 1, R(M

o

) = fM

o

;M

1

;M

2

g whereM

1

= p

1

+p

4

and M

2

= p

3

+ p

4

. M

1

is reachable from M

o

through the �ring sequence < t

2

>

and M

2

is reachable fromM

o

through the �ring sequence < t

2

; t

1

>. When t

2

�res

it disactivates the inhibition over t

1

converting it into an enabled transition.

In Timed Petri Nets (TPN) a �ring delay is associated with each transition.

It speci�es the amount of time that must elapse before the transition can �re

once it is enabled and has been chosen to �re. The Stochastic Petri Net (SPN)

model is obtained from the TPN model by associating a probability distribution

function to the �ring time of each transition. Most authors associate exponentially

distributed �ring delays with PN transitions, because of the memoryless property

of the distribution which is useful for the solution of the embedded Markov Chain

formed by the states (markings) of the PN. The parameters of an exponential or

general distribution are said to be marking dependent if they can di�er according

to each marking.

When several timed transitions are simultaneously enabled in a given mark-

ing it is frequently assumed that the one with the lowest �ring delay will �re �rst.

The solution of a Continuous Time Markov Chain (CTMC) model consists

of the computation of the probability mass function over the state space S either

at any arbitrary time instant t or in equilibrium conditions. When an equilibrium

or steady-state probability mass function (pmf) exists, and is independent of the

initial state, the CTMC is said to be ergodic [1]. We can stablish a isomorphism

between the RG of the SPN and its embedded CTMC by the association of the

nodes in the reachability graph with the states of the embedded Markov Chain.

A su�cient condition for a SPN to be ergodic is that the initial marking

M

o

is reachable from any M

i

2R(M

o

). If the SPN is ergodic so is the isomorphic

CTMC. The solution of this CTMC provides the steady-state probability distribu-

tion on the markings of the SPN. From the steady-state distribution it is possible

to obtain quantitative estimates of the behaviour of the SPN. The limitations of

the SPN are that the graphical representation of systems becomes rapidly di�cult

when system size and complexity increase. Moreover, the number of states of the

associated CTMC grows very fast with the dimensions of the net.

Generalized SPNs (GSPNs) [1] try to mitigate the problem of explosion of

the number of states of the CTMC by de�ning two types of transitions: timed

transitions and immediate transitions; these are referred to as exponentially dis-

tributed transitions and deterministic with value 0 transitions, respectively. A set

of transitions is said to be conicting if they are simultaneously enabled. Immedi-

ate transitions are usually considered to have �ring priority over timed transitions.

In the case of simultaneous enabling of several immediate transitions, a probab-

ility function must specify the probability of �ring of each immediate conicting

transition.
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Figure 1: Fig. 2 A Generalized Stochastic Petri Net (GSPN)

A marking is said to be tangible if it enables no immediate transition,

otherwise it is called vanishing. A marking which does not enable any transition

is absorbing, hence it is tangible by de�nition.

In the GSPN of Fig. 2, the thick horizontal lines represent immediate

transitions and the boxes represent exponentially distributed timed transitions.

The markingM

1

= p

1

+p

4

is a tangible marking whereas the markingM

2

= p

3

+p

4

is vanishing.

From now on O

j

(t

k

), I

j

(t

k

) and H

j

(t

k

) will represent the multiplicity of

the output, input and inhibiting arcs in between a place p

j

and a transition t

k

,

respectively; and O(t

k

), I(t

k

) and H(t

k

) will represent bags of output, input and

inhibiting places of a transtion t

k

, respectively.

The incidence matrixC of a PN has entries c

jk

= O

j

(t

k

)�I

j

(t

k

). Any vector

i, that is an integer solution of the matrix equation C

T

i=0 is a place invariant

of the PN. All the place invariants of a PN can be obtained as a combination of

a �nite set of generators, called minimal-support place invariants (P-invariants).

The scalar product between a P-invariant and any marking M 2 R(M

o

) yields

a constant called the token count of the invariant. The linear equation resulting

from this scalar product will be indicated as a marking invariant (M-invariant)[11].

The concept of transitions invariants (T-invariants) is dual to P-invariants [19]. A

PN is said to be covered by P-invariants(T-invariants) if all its places (transitions)
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are included in the set of P-invariants(T-invariants).

Structural analysis, or the study of invariants, attempts to isolate from

a set subnets with special properties. Place invariants can be used for static

deadlock detection as pointed out by [22].There are also important applications

of transition invariants in modeling logic programs comprising Horn clauses [15].

The same algorithm can be used to compute both place and transition invariants

[19].

Consider a set D � P in a PN. Let

D

�

= ftjt is an output transition of a place p 2 Dg

�

D = ftjt is an input transition of a place p 2 Dg:

If a set D sati�es

�

D � D

�

we say that the PN is deadlocked. If a set D satis�es

D

�

�

�

D, it is called a trap[13]. In Fig. 3 we give examples of traps and deadlocks

(taken from [25]).

a deadlock but not a trap

a deadlock and a trap

a trap but not a deadlock

Fig. 3 Examples of Deadlocks and Traps
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When the �ring of a transition t

m

disables another previously enabled trans-

ition t

l

, we say that t

l

is in conict with t

m

(Fig. 4). A transition t

l

is said to be

in structural conict with t

m

,denoted t

l
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Fig. 4 Structural Conict examples

In case (a) of Fig. 4 both transitions are initially enabled. If transition t

2

�res �rst it will take one token from p

1

and one from p

2

and place a token in p

3

,

disabling transition t

1

. If t

1

�res �rst it will take a token from p

1

and place one

in p

3

, disabling transition t

2

. In this case both t

1

SCt

2

and t

2

SCt

1

. In case (b) of

Fig. 4 both transitions are initially enabled. If t

2

�res �rst it will place a token

in p

3

which would inhibit t

1

because there is an inhibiting arc from p

4

to t

1

. In

the case that t

1

�res �rst, t

2

will remain enabled after the �ring, thus t

1

SCt

2

and

notft

2

SCt

1

g.

Two transitions t

l

and t

m

are mutually exclusivewith respect to an initil

marking if they cannot be enabled together in any reachable marking (Fig. 5).
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Two transitions t

l

and t

m

are said to be in Symmetrically Structural Con-

ict,

denoted t

l

SSCt

m

, i�

[t

l

SCt

m

_ t

m

SCt

l

] ^ not(t

l

MEt

m

)

The extended conict set (ECS) of a transition is de�ned as:

ECS(t) = ft

i

jt

i

SCC

�

tg

where SSC

�

is the equivalence relation generated by the transitive and reexive

closure of the SSC, that can be used to partition immediate transitions into classes

of possible conicting sets.

In a general Petri Net the actual resolution of a conict (i.e. deciding which

among the conicting transitions is to be �red next) may depend on the �ring of

sequences of transitions that are not in conict with each other. This problem is

known as confusion, and appears when the �ring of a transition t

l

, that is not in

the ECS of a given transition t

k

, enables a third transition t

m

that instead belongs

to the ECS of t

k

(t

m

2 ECS(t

k

)). This implies that, in a confusion free net, the

resolution of conicts is completely determined within a single ECS, while in the

case of confusion, the speci�cation at the level of ECS might not be su�cient to

determine the behaviour of a net.

An immediate transition t

l

is said to be Causally Connected (CC) to t

m

with respect to a third transition t

k

(Fig. 6),

9



denoted by t

l

CC

t
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]
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Fig. 6Example of a Causual Connection

In case (a) of Fig. 6, after the immediate transition t

l

�res inserting the

corresponding tokens in its output place, if transition t

k

�res, there will still be

tokens placed by the �ring of t

l

in the input place of t

m

that enable transition

t

m

, thus t

l

CC

t

k

t

m

. In other cases it may only contribute to the enabling of the

transition. In case (b) of Fig. 6 when t

l

�res it will extract the corresponding

number of tokens from its input place, which is not also an output place for t

l

. As

h

p

2

(t

k

) > h

p

2

(t

m

) (i.e. 2 > 1) and (H(t

k

)�H(t

m

))\ (I(t

l

)�O(t

l

)) 6= ;, the �ring

of t

l

will contribute to the enabling and possible �ring of t

m

, thus t

l

CC

t

k

t

m

.

The transitions causally connected with a given transition form a Caus-

ally Connected Set (CCS). This set contains all the transitions that directly or

indirectly could be enabled by transition t

m

[11].
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A su�cient condition for a PN to be structurally confusion free is:

8t

i

2 T 8t

j

2 ECS(t

i

) ^ j 6= i CCS

t

i

(t

j

) = ;

which means that a transition belonging to the same conict set of another

transition t can be causally connected only with transitions that are mutually

exclusive of t itself. [11]

A PN is k-bounded for some integer k � 1 if for every state M in the

reachability set, M(p

i

)� k for any place p

i

2P, i.e., no place in the Petri net will

ever receive more than k tokens. A PN is bounded if it is k-bounded for some k.

A Petri net is a free choice Petri net (FCPN) if for every transition t

j

2 T

and place p

i

2 I

j

either (1) t

j

is the only output transition of p

i

or (2) p

i

is the only

input place of t

j

. A Petri net is persistent if for every state M in the reachability

set and any transitions t

i

and t

j

(i 6= j), if t

i

and t

j

are enabled at M , then the

sequence t

i

t

j

is �reable at M . A Petri net is conict free if each place p

i

2 P

sati�es either (1) there is at most one arc out of p

i

or (2) 8t

j

p

i

2 I

j

i� p

i

2 Oj.

Note that all conict free nets are persistent but the converse is not true [13].

A Priority Petri Net (PPN) or a Petri Net with priorities is a Petri Net

with a non-negative function

Q

(:) de�ned over the set of transitions which as-

sociates each transition with a non-negative number that represents its priority

level [7]. The priority structure de�ned on transitions can be used to partition the

reachability set of a Petri Net according to the priority level of a transition. From

the priorities angle, GSPNs can be seen as priority Petri Nets, where immediate

transitions have priority 1 and exponentially timed transitions have priority 0 .

The Tangible Reachability Set (TRS) of a PPN is the set of all tangible

markings reachable from M

o

, including M0 only if it enables a tangible marking.

The Tangible Reachability Graph (TRG) of a PN is the labeled directed graph

whose vertices are the elements of the TRS, and whose arcs (M

i

;M

j

) are labeled k

indicating that marking M

j

can be reached from marking M

i

by �ring a sequence

where the only non-immediate transition is transition t

k

.

A transition t

j

is live at state M if for any �reable sequence � at M there

is a �2 T

�

such that ��t

j

is �reable at M, where T

�

is the set of all possible �ring

sequences including the null sequence where no transition �res. A Petri net is live

if every transition of the net is live at the initial state [13].

Liveness is one of the most classic problems in the qualitative analysis of

Petri net models. This problem is solvable at the structural level only for the class

of FCPN, for which the Commoner's property holds:

A marked free-choice net is live and bounded if and only if any deadlock

contains at least one trap, which is not empty in the initial marking.
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Where a marked FCPN, is a FCPN for which an initial marking has being de�ned.

For larger classes of nets, only necessary or su�cient conditions can be determined

at the structural level. For example,

A bounded Petri net is live only if it is covered by T-invariants.

The actual determination of the liveness property is in general feasible for bounded

nets only by looking at the structure of the Reachability Graph.

The computation of the actual liveness degree for each transition [4] is auto-

matically performed after the computation of the Tangible Reachability Graph.

Moreover, the structure of the TRG is checked in order to determine the maximal

strongly connected components.

If only one maximal strongly connected component is found, and this com-

ponent contains more than one tangible marking, then the model has a \home

space" which is composed by the markings belonging to the strongly connected

component. If the initial marking belongs to the home space then the TRG is

strongly connected and each marking is reachable from all other markings.

If more than one maximal strongly connected component is found, then

the model has several \livelocks" or \deadlocks", and no home state. A deadlock

is a particular case of a strongly connected component of the TRG comprised of

a single marking in which no transition is enabled.

A livelock is a subset of markings in which there is always at least one

transition enabled, but such that other livelocks or deadlocks are not reachable.

If the initial marking is neither a home state nor a deadlock, then the model

exhibits a transient behaviour, during which it reaches markings that might never

be produced again.

In the case where the initial marking is found not to be a home state, the

information concerning the liveness degree of transitions is split in three compon-

ents:

1. the maximum enabling degree found in the transient states;

2. the maximum enabling degree among all livelocks;

3. the minimum among all livelocks and deadlocks of the maximum enabling

degree within each livelock or deadlock (and this is called the liveness bound,

in the sense that it is the maximum enabling degree that is guaranteed to

be reachable in the long run of the model).

A place p is implicit in a net system i� its elimination preserves the �ring

sequence of the net system; in other words, p is never the unique place that

prevents the �ring of a transition [9].
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2 GreatSPN1.6

GreatSPN (Graphical Editor Analyzer for Timed and Stochastic Petri Nets) was

developed at the University of Torino, by Giovanni Chiola and collaborators. It

is based on the notion of Generalized Stochastic Petri Nets (GSPNs), which was

developed as a tool for the speci�cation and performance evaluation of computers

[18].

The primary purpose of the �rst version of GreatSPN was to experiment

with new modelling tools and gain insight into the memory and CPU requirements

of the solution algorithms as functions of the size of the GSPN models. This

implied that little attention was devoted to either the portability and exibility

of the programs, or to the model de�nition facilities.

The �rst version of GreatSPN [6] included the algorithms for the gener-

ation of the underlying Markov Chain of a GSPN and for its steady-state and

transient solutions. It also o�ered a new algorithm for the analysis of a class of

models in which the timings for the transitions could be either exponentially dis-

tributed or deterministic (DSPN), and an algorithm for the analysis of new class

of deterministically timed Petri Nets (DTPN).

The early GSPN (as well as DSPN and DTPN) analysis programs used to

focus on exact numerical solution techniques. In GreatSPN 1.0 a Monte Carlo

simulation program with con�dence level estimation was also introduced for two

main reasons: �rst, to provide a tool for performance evaluation in the general

case of Timed Petri Nets (TPN) that are not analytically solvable (i.e. nets with

mixed random and deterministic timing that do not enjoy the DSPN applicability

condition [2]), and second, to provide a tool for the validation of compact (possibly

approximate) models when numerical solutions cannot be implemented due to the

size of the Reachability Graph (number of states of the Markov chain).

At this point GreatSPN started to become an interesting and useful support

for performance modelling. The Torino group started to look more carefully at

the traditional techniques and algorithms used in classical Petri net theory for the

study of qualitative structural and behavioural properties. A major improvement

in the validation capabilities of the package was achieved with the implementation

of Martinez and Silva's algorithm for the computation of Place and Transition

invariants [20]. That allows an easy check of structurally necessary or su�cient

conditions for boundedness and ergodicity before the exaustive enumeration of the

state space. Some features such as the numerical solution of DSPNs and DTPNs

were ine�ciently implemented and have been subsequently removed since version

1.5 of the package.

In GreatSPN1.6, algorithms and techniques have been implemented for

the reduction of immediate transitions, and the Tangible Reachability Graph is

directly produced [7], further reducing the space and time requirements of this
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phase with respect to the technique proposed in [5].

Another new approach incorporated since version 1.5 of the package is that

based on Linear Programming for the veri�cation of some structural properties and

the fast evaluation of throughput bounds. This approach has been developed in

co-operation with the Universidad de Zaragoza, Spain.

In order to allow the visualization of the structural, behavioural, and per-

formance results obtained by the analysis modules,GreatSPN1.6 o�ers information

on:

� Deadlocks, Traps, and implicit places

� Causal Connection and Liveness bounds

� Transition throughputs and probability distribution of the number of tokens

in each place.

GreatSPN1.6 includes the validation of behavioural properties based on the

same Tangible Reachability Graph that is used for the construction of the Em-

bedded Markov Chain. The Tangible Reachability Graph of a priority net (i.e.

a net in which transitions are assigned �ring priorities) is obtained according to

the de�nition given in [7], and qualitative analysis based on it are performed. Im-

mediate transitions are divided in non-connected independent subnets, and inside

each subnet, they are arbitrarily assigned a unique priority level as a function of

the ECS they belong to. With this approach, the interleaving in the �ring of im-

mediate transitions belonging to di�erent ECSs is avoided, since only one among

the many possible paths is selected. In [7] it is proved that this technique does

not a�ect the correctness of the TRG derived.

The Embedded Markov Chain underlying a GSPN model is constructed

starting from the TRG of the underlying PN, and labelling the arcs with the

correspon ding transition �ring probabilities. The average mean sojourn time in

each tangible marking is also computed by looking at the �ring rates of the enabled

transitions, and used to reconstruct the state probabilities of the continuous-time

stochastic process by renormalization of the state probability distribution of the

EMC.

The Steady-state numerical solution is obtained using an iterative Gauss-

Seidel to solve th EMC. The numerical computation of the transient marking

probability distribution at a given time with respect to the start time is obtained

by the use of a matrix exponentiation algorithm based on a truncated Taylor's

series expansion.

A number of default performance indices, as well as user de�ned ones, are

calculated automatically when the steady-state or transient solutions are com-
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puted. The default performance indices are the probability distribution of the

number of tokens in each place, and the throughput of each transition.

GreatSPN1.6 o�ers the facilities for the simulation of a Petri Net, both of

the basic untimed model and of the timed Petri net.

� For the simulation of the basic untimed model the user can determine inter-

actively the direction of each �ring (backwards or foward). For each marking

the enabled transitions will be highlighted and it is the user who selects the

transition (out o� the enabled ones) that will �re. We must remember that

in the basic untimed model all the transitions have equal priority. The

speed in which the tokens will move is determined by the �eld tokens moves,

where the lower the number the faster the token movement. The markings

of transitions can be change during the simulation process.

� For the timed Petri net simulation GreatSPN1.6 supports the de�nition of

diverse distributions for the determination of the delay of a transition.These

are: the Normalised Cox distribution, the Hyperexponential distribution, the

Erlang distribution and Linear and Discrete distributions. Timing semantics

may also be speci�ed: age/enabling memory for conicting transitions and

disabling and reanabling policy for multiple server transitions

Default speci�cations are \enabling memory" with \random" preemptiion

and reanabling policies.

Example: gd erlang 2 3.14 . Erlang distribution with two stages and mean

time 3.14. With the default timing semantics.

There are two basic ways in which a timed Petri Net simulation can be

performed (the combination of these is also supported). In all cases the

timed elapsed (according to the delay of the transitions, not real time) since

the begining of the simulation is shown. This time is also used to determine

the delay of the non-deterministic timed transitions in each marking, along

with other random variables.

{ As in the untimed model the user determines the �ring sequence, with

the exception that in this case immediate transitions are considered to

have a higher priority than timed transitions.

{ A step lenght is introduced,indicating the amount of �rings that should

be executed until the next interaction with the user. For example a step

of length 10, represents the �ring of 10 transitions (considering both im-

mediate and timed ones). For a marking or step where no immediate

transition is enabled and there is more than one timed transition en-

abled, the one to �re will be that with the smallest delay.

The automatic option where the user introduces an amount of time, and the

simulation would be performed until the amount of time elapsed equals or
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exceeds the speci�ed by the user, is not yet available but should soon be

incorporated.

In the case of transitions that can �re in parallel, although they will be

sequentially �red, in the calculus of the elapsed timed they are treated as

�ring in parallel.

Basic Coloured nets are also supported under GreatSPN1.6. The user can

de�ne a Colour Set, a Colouring Function and/or a Coloured Marking. There is

a de�ned BNF syntax for the de�nition of these elements.

Coloured sets can be de�ned in four di�erent ways: by a element list,

by automatic enumaration, by union or intersection of sets or by the Cartesian

product of sets.

A Petri net can be represented in di�erent layers (not to be confussed with

hierarchy). This allows a creater exibility in the size of the net, its modularity

and the clarity of its representation.

The standard method for introducing a Petri Net model in GreatSPN1.6

for its analysis is by a graphical interface o�ered by the package under Open

Windows 3.0. The user "draws" the Petri Net model incorporating the places,

immediate and stochastic timed transitions, arcs and the initial markings for each

place. An alternative method would be to creat the �les describing the net (.net

and .def), for the package to read them. Once a �le has been loaded into the

graphical interface, the analysis methods described above can be applided through

the graphical interface and its pop-up menus. The results of each analysis would

be placed in detail in a respective output �le and a summary of the results would

be presented on the screen.

When needed, the structure of the TRG can be decoded and printed in

ASCII form from outside the graphical interface.

All modules of GreatSPN1.6 are written in the C programming language.

It runs on Sun workstations under csh with the SunOS 4.1.3, using Open Windows

3.0 for its graphical interface. SPARC stations with at least 16MB RAM are re-

commended (although the tool could work slowly on 8MB machines). A complete

porting under X11R5 is currently under study.

The package also includes printing facilities. Postscript �les can be pro-

duced ready to be included into L

a

T

E

Xdocuments by means of the \special" com-

mand.

Research is going on for the incorporation of new features in GreatSPN,

such as: high-level (coloured) nets, hierarchical modelling, structural reduction of

nets with interaction with queueing network models, among others.
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3 DSPNexpress1.2

The development of this package was motivated by the lack of powerful software

packages for the numerical solution of deterministic and stochastic Petri Nets

(DSPNs) and the complexity requirements imposed by evaluating memory con-

sistency models for multicomputer systems.

DSPNexpress [16] is based on version 1.4 of GreatSPN. I o�ers facilities for

the analysis of the structural properties of a DSPN such as the calculus of the

P-invariants, ECS and token movement simulation facilities.

It o�ers a graphical interface based on X11. To check or validate the

structural properties of a DSPN, it calculates the P-invariants, ECS and o�ers a

token movement simulation facility.

Compared to GreatSPN1.6, the software architecture of DSPNexpress is

particulary tailored to the numerical evaluation of DSPNs.

DSPNexpress contains an e�cient numerical algorithm for calculating the

state transition probabilities of the embedded Markov Chain of a DSPN and the

corresponding conversion factors. A similar algorithm is employed for calculating

transient solutions of a GSPN. These numerical algorithms are based on the ran-

domization technique (see subsection Randomization Technique) improved by a

stable calculation of Poisson probabilities.

The DSPN solution module of DSPNexpress treats each connected com-

ponent of a Markov chain as being subordinated to a deterministic transition of a

DSPN, separately, for calculating the corresponding transition probabilities of the

embedded Markov Chain and the conversion factors. This leads to a considerable

reduction of the computational e�ort and memory requirements of the DSPN solu-

tion algorithm. Moreover, it allows multiple instances of the appropiate procedure

to be invoked which may run in parallel on a cluster of workstations.

Using an extension of the DSPN solution process, DSPNexpress incorpor-

ates a numerical solution approach for dealing with marking dependent delays of

deterministic transitions. The basic idea is to scale the transition by the delay

speci�ed for the corresponding marking. Thus, the general approach for dealing

with marking-dependent �ring delays has been tailored to the deterministic case.

This feature constitutes an extension of the modeling power of DSPNs which is

useful for representing load-dependent deterministic service times at a resource.

The organization of DSPNexpress exploits the property that each GSPN

can be considered as a DSPN without deterministic transitions. As a consequence,

a uni�ed solution process for both DSPN and GSPN models is provided by DSPN-

express.

In DSPNexpress, sparse implementation of the direct Gaussian elimination
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and the iterative adaptive accelerated succesive overrelaxation method have been

adopted. Depending on the properties of the transition probability matrix of

the embedded Markov Chain the appropiate numerical method for solving the

linear system of its global balance equations is chosen. If an iterative method

is selected, the convergence will be monitored. In a case of bad convergence,

the algorithm retries the calculation of the state probability vector by the stable

Gaussian elimination method.

The reachability graph construction is performed for confusion-free DSPNs

by a software component which is based on the method proposed in [11]. The cod-

ing structure of the search tree is organised as proposed by [5].The Markov chains

subordinated to the deterministic transitions are derived during the reachability

graph construction.

During the generation of the reachability graph of a DSPN, the Markov

chains de�ned by exponential transitions competitively or concurrently enabled

with deterministic solution, are derived. These Markov chains are subsequently

called subordinated Markov chains (MC). For each connected component of such

a subordinated MC, the transient state probabilities and the mean sojourn times

in their states are e�ciently calculated by the numerical algorithm introduced in

[17].

The interaction between software modules of DSPNexpress is performed

mostly by interprocess communication by means of sockets. Allowing parallel

transient evaluation of the subordinated MC on di�erent machines.

The module in charge of the solution of the subsequent MC, �rst determines

the transition rates of markings in which only exponential transitions are enabled.

Additionally, for each deterministic transition in the DSPN the transition matrices

of the connected components of its subordinated MC are derived.

The numerical solution method of DSPN requires that in no marking are

two or more transitions concurrently enabled, i.e. the states of subordinated the

MC build disjoint sets, allowing parallelism in the solution.

The code of DSPN is a combination of C and Fortran 77 modules, but

mostly C. DSPNexpress includes support for the incorporation of marking de-

pendent �ring delays on deterministic transitions. Since the memoryless property

does not hold for deterministic distributions, additional semantics have to be con-

sidered to properly de�ne the association of marking-dependent �ring delays to

deterministic transitions. In cases where the marking condition which speci�es the

marking-dependent delay of a deterministic transition does not remain constant

during its enabling interval, an execution policy of its �ring must be speci�ed.
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3.1 Randomization Technique

Several numerical techniques for computing time-dependent state probabilities of a

continuous-time Markov chain with �nite state space and sparse generator matrix

have been evaluated by Reibman and Triverdi [24]. In particular, the random-

ization technique [12] and two linear multi-step methods for numerically solving

the Chapman-Kolmogorov di�erential equation have been considered. All theses

methods have implementations which exploit the sparsity of the generator matrix

Q. Their study has shown that in case of nonsti� and moderately sti� problems the

randomization approach is more e�cient than general solution techniques for dif-

ferential equations. The Randomization Technique consists of the following: From

the generator matrix Q of dimension N (The number of states in the chain) of a

continuous-time Markov chain and a scalar q (as de�nied by Wallace and Rosen-

berg in [26]) an aperiodic matrix A is obtained, which represents the generator

matrix of the subordinated discrete Markov chain.

The computation of the transient probability vector of the continuous-time

Markov chain is reduced to the computation of the transient probability vector

of the discrete-time Markov chain with probability matrix A and appropriate

Poisson probabilities. The probability vector of the discrete-time Markov chain

can be e�eciently computed by recursive vector-matrix multiplications.

The probability mass function of the Poisson distribution thins when the

parameter of the function grows, so its computation may get a�ected by round-

o� errors. In this sense the randomization technique is enhanced by a stable

calculation of the Poisson probabilities by establishing a lower and higher bound

of the generating series.

The randomization approach is suitable for calculating other transient

quantities such as transient probabilities at multiples instants of time and cu-

mulative measures.

3.2 Numerical solution for the DSPNs

Sampling the stochastic behaviour of the DSPN only at appropriately selected in-

stants of time, de�nes a discrete-time stochastic point process which possesses

the Markovian property. Where only exponential transitions are enabled the

stochastic behaviour of the DSPN is sampled at the instant of its �ring. If a de-

terministic transition is competitively enabled with some exponential transitions,

the stochastic behaviour is sampled when either the deterministic or the expo-

nential transition �res. If a deterministic transition is concurrently enabled with

some exponential transition, the stochastic behaviour is sampled at the instant of

time of �ring the deterministic transition.

As a consequence, a marking change in the DSPN due to �ring of an expo-
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nential transition concurrently enabled with a deterministic one is not represented

in the embedded Markov chain by a corresponding state change. Thus, the em-

bedded Markov chain typically contains fewer states than the number of tangible

markings of the DSPN. This continuous-time Markov chain is subsequently refered

to as the subordinated Markov chain of a deterministic transition.

In the �rst step of the DSPN solution process the Reachability Graph is

generated, following the algorithm proposed in [11].

The second step is the calculation of the transition probability matrix P

of the embedded Markov chain and the conversion matrix C. For markings which

enable a deterministic transition T

k

competitively or concurrently with some ex-

ponential transitions the corresponding entries of these matrices are derived by

calculating time-dependent quantities of the subordinated Markov chain. Tran-

sient state probabilities of the Markov chain subordinated to the deterministic

transition T

k

determine the corresponding transtion probabilities of the embed-

ded Markov chain.

Conversion factors are employed to derive the steady-state probability vec-

tor of the DSPN of dimension N from the steady-state probability vector of the

embedded Markov chain of dimension N

0

.

4 SPNP Version 3.0

SPNP (Stochastic Petri Net Package) Version3.0 was developed at Duke Uni-

versityby Kishor Trivedi together with his former students Gianfranco Ciardo and

Jogesh Muppala.

SPNP can run on a wide range of UNIX platforms such as VAX, Sun 3 and

4, Convex, Gould and under the VMS system on VAX.

When in a SPN transitions of di�erent types are simultaneously enabled,

the decision of which one would �re �rst is based on priority values that must be

introduced.

Complementary to the concept of inhibiting arc, an enabling/disabling

function is added, in order to allow complex constructions. To each transition

a priority must be assigned, to be able to solve the �ring problem in the case

of conicting transitions. To avoid theoretical di�culties, timed and immediate

transitions cannot have the same priority. If the enabling function evaluates to

zero in a certain marking then the corresponding transition would be disabled.

An interesting feature allowed in the SPNP model, which di�ers from the

other packages, is the notion of marking dependent arc multiplicity. This possib-

ility was de�ned to be able to model, in a compact way, behaviours that would
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otherwise require complex subnets [8]. A typical example is the case where all

tokens from place p must be moved to place q when transition t �res. An input

arc from p to t and an output arc from t to q, both with marking dependent

multiplicity equal to the number of tokens in place p are enough to model this

behaviour. Of course this could make the SPN harder to understand, and would

consume more computation time for the solution of the model.

One of the main contributions of the development of SPNP is the im-

plementation of algorithms for an e�cient generation of the reachability graph of

large SPNs and an automated sensitivity analysis of model parameters. Moreover,

SPNP can process very general reward speci�cations which are useful for integ-

rated and dependable evaluation of complex systems. The package also contains

an e�cient software module for transient analysis of GSPNs which is based on

the randomization technique with left truncation. Nevertheless SPNP does not

contain a numerical solution algorithm for DSPNs.

The description of the PN to be analysed must be described in a CSPL

(C-based Stochastic Petri Net Language) �le [8], which is a C �le specifying the

structure of the SPN and the desired outputs, by means of prede�ned functions.

The CSPL �le has then to be compiled, linked to other �les constituting the

package and run.

Any legal C construct can be used, as needed. The user is allowed to de�ne

his or her own variables and functions and use them anywhere in the CSPL �le.

A CSPL �le must specify the following functions:

parameters: where desired output �les, method of resolution, precision, and

other program features are speci�ed. In this section additional user's parameter

may be speci�ed. They can be programed in such a way that they are introduced

interactively, by the use of the function input.

net: where the structure of the net is introduced. Specifying the time rates

of each timed transition, the probability of each immediate transition, this being

the way to di�erentiate the type of transition; and for all conicting transitions

the �ring priority. While solving the net, the program would report any incorrect

de�nition or the existence of conicting transitions whose �ring priorities have

not been speci�ed. By default transitions have the lowest priority (0) and have

no enabling function (or better, their enabling function is set to the constant 1).

When sensitivity analysis is needed, both the rate and its derivative need

to be speci�ed (no default type, rate or probability exists).

Marking dependent functions can be de�ned for the multiplicity of an arc

or for the �ring rate of a transitions.

assert(): This is called during reachability graph construction, to check the

validity of each newly found marking. The user can add conditions to the normal
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check in order to specify systems of greater complexity. Nevertheless absence of

legal markings or legal �ring sequences cannot be detected by this check.

ac init(): This is called before starting reachability graph construction. In

it we can call the prede�ned function: pr net info(); to output data about the

SPN.

In the function (or section) ac reach we can call pr rg info() to obtain

information on the reachability graph.

When either the steady-state analysis or steady-state sensitivity analysis

is requested, ac �nal is called after the solution of the CTMC has completed,

supplying user-prerequested values, speci�ed by:

pr mc info(); For information on the CTMC and its solution. Desired

output measures must be requested in this function.

pr std average(); Outputs for each place the probability that it is not empty

and its number of tokens. For each timed transition it outputs the probability that

it is enabled and its average throughput.

pr std average der(); Prints the derivatives of all the above standard meas-

ures. In this function we can include reward values for the transitions.

When transient analysis or transient sensitivity analysis is required, ac �nal

is called before the solution of the CTMC. For this type of analysis a time point

needs to be speci�ed.

4.1 Specialized output functions

The package was initially aimed at the steady-state solution of SPNs whose un-

derlying CTMC is ergodic. There are a number of measures which could be con-

sidered "unusual". but closely related to the steady-state. In particular, they do

not require the implementation of a new-solver; they can be computed either from

the steady-state probabilities or by solving a slightly di�erent (non-homogeneous)

linear system.

These measures were de�ned and implemented to perform decomposition-

iteration techniques allowing approximated solution of SPNs whose state space is

too large to be studied directly.

4.2 Planned work

A simulation solution method will be available. General or empirical distributions

will be allowed in conjunction with simulation.
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The de�nition of a higher-level language, or speci�cally the availability of

a graphical input tool, will improve user-friendliness.

Global check on the absence of legal markings or �ring sequence. An al-

ternative standard format containing the distributions, instead of the averages, is

under preparation.

5 Comparison

In this section we try to summarise the features provided by each of the packages

reviewed in this paper, at the same time as we compare them.

The features have been divided into several categories in other to facilitate

the comparison of the packages.

To point out the common and di�erent features of the packages we have

chosen a simple example (Fig. 7). Printouts of the results o�ered by each package

are presented in the appendix A for better understanding of the features discussed.
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Fig.7.- Erlang queue Er/D/1/K, with � = 9, � = :1, 5 phases and 3 bu�ers (K)

5.1 Structural Analysis

All three packages o�er basic information on the structural composition of the

net. Number of vanishing, tangible and absorbing markings (See Appendix A for

the results o�ered by each of the packages for the example proposed).

A feature only o�ered by SPNP3.0 is the preservation of vanishing markings

in the construction of the reachability graph. It also permits the user to add

conditions to the normal check of the net in order to detect illegal markings.

GreatSPN1.6 o�ers extensive features for structural analysis, such as: place

and transition invariants, deadlocks and traps, implicit places, causal connec-

tion and structural conict, mutual exclusion, ECS, structural boundness and
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unbounded transition sequences. The reachability graph construction is done for

confusion-free nets (See Appendix A).

DSPNexpress only considers some features for the structural analysis (Place-

invariants and ECS), also obtaining the reachability graph for confusion-free nets.

5.2 SPN extensions

This refers concepts additional to the basic SPN available in the packages. All

three packages work with exponential and immediate transitions. DSPNexpess

adds the possibility of incorporating deterministic timed transitions to the net.

SPNP3.0 allows the de�nition of marking dependent graph multiplicity. It

also o�ers the de�nition of enabling functions, apart from the basic inhibiting arcs.

For the sake of sensitivity analysis it supports the incorporation of reward values

and functions.

DSPNexpress permits the de�nition of marking dependent �ring times for

deterministically timed transitions. It also allows the analysis of the net by the

variation of a marking or a delay parameter in a certain range (see Fig. A.2.4 of

Appendix A).

GreatSPN1.6 incorporates the de�nition of colouring sets and markings.

5.3 Numerical Steady State Analysis for GSPNs

SPNP3.0 o�ers the option of applying either an iterative near optimal SOR or a

Gauss-Seidel solution method. On the other hand GreatSPN1.6 directly applies

an iterative Gauss-Seidel.

DSPNexpress o�ers the following options for the solution of the linear sys-

tem of equations of the Steady state solution:

� automatic: an adaptive accelerated SOR with convergencemonitoring, which

in case of failure applies a sparse implementation of direct Gaussian Elimin-

ation.

� iterative: applies an adaptive accelerated SOR

� direct: applies a sparse implementation of a direct Gaussian Elimination

also o�ering the option of a sequential or parallel execution of the al-

gorithms for the solution of the sub-Markov Chains.
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5.4 Numerical transient analysis for GSPNs

In SPNP3.0 randomization is enhanced by left-truncation and steady-state check,

GreatSPN1.6 uses an adaptive matrix exponentiation and in DSPNexpress ran-

domization is enhanced by a stable calculation of Poisson Probabilities.

5.5 Stochastic simulation of SPNs with arbitrary timing

GreatSPN1.6 o�ers a Discrete event simulator, where several probability distribu-

tions are allowed for transition timings (including uniform, discrete, Cox, Erlang,

etc), allowing timed interactive simulation for quantitative validation.

DSPNexpress also o�ers a basic Discrete event simulator .

In SPNP3.0 this feature is not supplied, nevertheless it is being considered

as an element to be incorporated in future versions of the software.

5.6 Model Composition or decomposition

Only SPNP3.0 supports automated GSPN composition. The other packages do

not o�er anything in this sense, although the hierarchical analysis of the GSPNs

is a feature under study by the group developing GreatSPN1.6.

5.7 Non-standard techniques

SPNP3.0 o�ers automated sensitivity analysis and methods for the calculation of

the mean time to absorption.

5.8 Interaction between software modules

In respect of the way in which the di�erent modules of the packages communicate

DSPNexpress has the advantage of using a reliable interprocess communication by

means of sockets. The modules of SPNP3.0 and GreatSPN1.6 communicate by

the use of input/output �les.

5.9 User interface

SPNP3.0 employs CSPL (C-based Stochastic Petri Net language), but at the mo-

ment a graphical user interface is under development.GreatSPN1.6 o�ers a graph-
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ical interface running under Open Windows 3 , and DSPNexpress uses a graphical

interface running under X11.

5.10 Portability

SPNP3.0 can run on a wide range of UNIX platforms such as VAX, Sun 3 and 4,

Convex and Gould; and under VMS system on VAX.

DSPNexpress, can run on a compatible environment to a Sun

TM

4 work-

station under SunOS4.1 and the window system X11.

GreatSPN1.6 Runs on SUN workstations using Open Windows 3.0. A

complete porting under X11R5 is currently under study.

6 Intended and Possible Uses

The design and speci�cation of a program allowing static analysis, and thus yield-

ing information on possible deadlocks, mutual exclusion and resource utlization is

highly desirable [10].

We need a formalism that is capable of representing both the characteristics

of the architecture and the pecullarities of the program on a parallel computer in

such a way that both validation and performance evaluation can be performed

using basically the same model [3].

Petri nets, as well as process algebras, allow a precise description of the

system due to their formal syntax, behavioural semantics, algebraic reasoning, de-

duction of properties and equational transformations preserving behaviour [21],[3]

and [10].

The analysis of the performance of a program on a certain architecture,

normally requires the use of two Petri nets, one representing the structure and

characteristics of the architecture and the other representing the structure and

needs the software application. The Petri net representing the architecture (hard-

ware) characteristics is initially solved to produce the average processing times for

the di�erent types of existing tasks in the sofware speci�cation, normally quali�ed

by their resource requirements. The solution of the Petri net representing the

hardware also yields information on the hardware behaviour in general as stated

before.

In the Petri net representing the software application the transitions would

represent the tasks or processes and the token ow indicates data and control ow

among the tasks.

The fact of having two nets to represent the computational system retricts
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the exibility in the analysis of the performance of a software application by

varying the characteristics of the hardware, such as resource availability, policy of

assignment, etc. In order to support this integration of the software and hardware

speci�cations of the system, the Petri net representation should supply the ways

of distinguishing the elements represented in the net. Transitions and places could

be distinguished by tags but to distinguish the di�erent types of tokens we would

require a marking colouring facility.

In order to use Petri nets as a method for the speci�cation and design of

parallel programs, the package would have to support the fact of simultaneous

�ring of transitions, both of exponential and deterministic transitions. Given the

complexity involved in trying to incorporate this feature by the use of numerical

algorithms, maybe this requirement could be satis�ed by the use of analytical

approximations, as proposed in [10] and [14]. In addition possible conversion

factors could be required in order to obtain better approximations.

Performance requirementsmust be e�ectively captured in parallel programs

speci�cations. Speci�cation methods should support functional and temporal spe-

ci�cations, suitably representing various aspects of parallel systems, such as soft-

ware (control-ow, data ow, communication,synchronization, non-determinism,

etc.) and hardware (resources like processing elements, memorymodules, commu-

nication, media, etc.), by simple but expressive graphical means. The capability of

investigating on various levels of abstraction (i.e. providing concepts of modularity

and hierarchical decomposability) for (automated) analysis concerning perform-

ance, functional validity, correctness, expected behaviour, support for generating

executable and analysable application prototypes and generation of high level lan-

guage source code are other properties desired to be supported [10].

We would like to be able to study the di�erent levels of Petri nets, in a

hierarchical speci�cation of a program. Trying to consider each net as a whole, by

"supplying" it with the resources needed and then integrating the solution of this

Petri net as a compound transition of a higher level Petri net.

7 Conclusions

To introduce the user to the Petri Net modeling tools reviewed in this paper an

initial overview of the main Petri Nets concepts employed when using PNs as

System Modeling tools for performance measurement was given.

The information that we have supplied for each of the packages reviewed,

has come both from the experience gained by working with each package and from

the existing documentation for each one.

None of the packages studied o�er all the modeling features that we intend
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to apply in the Performance Oriented Speci�cation and Design Technique for

Parallel Programs. We should however keep in mind that this technique has not

yet been completely formalised and that the developers of packages studied are

still incorporating new modeling features to their packages.
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8 Appendix A

8.1 Some features of GreatSPN1.6

Fig. A.1.1.- General view of the package's interface

Fig. A.1.2.- Graphical representation of the places forming a deadlock

Fig. A.1.3.- Graphical representation of the T-invariants

Fig. A.1.4.- Untimed simulation

Fig. A.1.5.- Timed simulation

Fig. A.1.6.- Numerical analysis results for the Erlang queue example
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Fig. A.1.1.- General view of the package's interface
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Fig. A.1.2.- Graphical representation of the places forming a deadlock
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Fig. A.1.3.- Graphical representation of the T-invariants
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Fig. A.1.4.- Untimed simulation
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Fig. A.1.5.- Timed simulation
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Fig. A.1.6.- Numerical analysis results for the Erlang queue example
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8.2 Some features of DSPNexpress1.2

Fig. A.2.1.- General view of the package's interface

Fig. A.2.2.- Calculation of the P-Invariants

Fig. A.2.3.- Selection of the solution method for a DSPN

Fig. A.2.4.- De�ning a experiment

Fig. A.2.5.- Transition �ring simulation in DSPNexpress1.2

Fig. A.2.6.- Numerical analysis results for the Erlang queue example

Fig. A.2.7.- Log �le for the Erlang queue example
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Fig. A.2.1.- General view of the package's interface
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Fig. A.2.2.- Calculation of the P-Invariants
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Fig. A.2.3.- Selection of the solution method for a DSPN
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Fig. A.2.4.- De�ning a experiment
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Fig. A.2.5.- Transition �ring simulation in DSPNexpress1.2
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Fig. A.2.6.- Numerical analysis results for the Erlang queue example
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Fig. A.2.7.- Log �le for the Erlang queue example

STRUCTURAL ANALYSIS

GENERATING THE REDUCED REACHABILITY GRAPH

The net contains 16 tangible markingsld.so: warning: /usr/lib/libc.so.1.7.3 has older revision than expected 8

DDED MARKOV CHAIN OF THE DSPN ...

Starting all rand processes locally with max. 2 concurrent processes.

Processing states of set Mexp.

Processing states of set Mexp terminated.

delta = 10.0222 eta = 26

Elapsed CPU time: 0.11 sec.

Elapsed overall time: 00:00:01

Total CPU time: 0.11 sec.

Total overall time: 00:00:01

SOLVING THE LINEAR SYSTEM OF GLOBAL BALANCE EQUATIONS ...

Deriving sparse representation of transition probability matrix in column-wise format.

Number of nonzeros : 26

Number of nonzeros per row : 6.10

Smallest entry : 2.22e-03

Trying Solution with iterative SOR ...

Iterative solver did not converge within 5000 iterations

for the pre-defined error tolerance of 1e-07

Retrying Solution with Gauss-Elimination ...

Number of off-diagonal elements of U: 15

Elapsed CPU time: 0.10 sec.

Elapsed overall time: 00:00:01

Required memory: 416 KB

DERIVING TOKEN PROBABILITY DISTRIBUTION IN EACH PLACE ...

SOLUTION OBTAINED.
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8.3 Some features of SPNP

Fig. A.3.1.- The CSPL for the Erlang Er/D/1/K queue de�nition

Fig. A.3.2.- Structural Analysis Results

Fig. A.3.3.- Numerical analysis results for the Erlang queue example
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Fig. A.3.1.- The CSPL for the Erlang Er/D/1/K queue de�nition

/* This is an example for a Erlang Er/D/1/K */

#include "user.h"

double tau=0.1,arrival;

int lambda=9,phases,buffers;

parameters() { phases=0;buffers=0;

while ((phases<1) || (buffers<=1)) {

phases = input("Introduce number of phases");

buffers = input("Introduce number of buffers");

if ((phases<=1) || (buffers<=1))

printf("invalid parameters\n");}

iopt(IOP_METHOD,VAL_GASEI);

iopt(IOP_PR_FULL_MARK,VAL_YES);

iopt(IOP_PR_RSET,VAL_YES);

iopt(IOP_ITERATIONS,20000);

fopt(FOP_PRECISION,0.00000001);

iopt(IOP_PR_RGRAPH,VAL_YES);

iopt(IOP_PR_MC,VAL_YES);

iopt(IOP_PR_PROB,VAL_YES);

iopt(IOP_MC,VAL_CTMC);

}

net() {

place("p1");

init("p1",buffers);

place("p2");

place("p3");

place("p4");

place("p5");

init("p5",1);

trans("t1");

probval("t1",0.09);

trans("t2");

trans("t3");

trans("t4");

arrival=phases*lambda;

rateval("t2",arrival);

rateval("t3",arrival);
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rateval("t4",tau);

priority("t1",1);

miarc("t3","p3",phases-1); moarc("t1","p2",phases-1);

oarc("t2","p3");

iarc("t1","p1"); oarc("t3","p4");

iarc("t1","p5"); oarc("t3","p5");

iarc("t2","p2"); oarc("t4","p1");

iarc("t4","p4");

iarc("t3","p1"); oarc("t1","p1");

}

assert(){return(RES_NOERR);}

ac_init(){pr_net_info();}

ac_reach(){fprintf(stderr,"\The reachability graph has been generated\n\n");

pr_rg_info();}

ac_final(){pr_mc_info();

pr_std_average();}
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Fig. A.3.2.- Log �le for the Erlang Queue example

The reachability graph contains:

16 tangible markings

3 vanishing markings

29 arcs

After elimination of redundant arcs:

# of remaining arcs: 29

ERROR/WARNING: transient initial marking. 0 markings reach it.

After the elimination of vanishing markings:

# of remaining arcs: 26

Solving the Markov chain...

...Markov chain solved

Reading the reachability graph info ...

End of execution.
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Fig. A.3.3.- Numerical analysis results for the Erlang queue example

INPUT: Introduce number of phases = 5

INPUT: Introduce number of buffers = 3

NET:

==========================================================================

places: 5

immediate transitions: 1

timed transitions: 3

constant input arcs: 6

constant output arcs: 6

constant inhibitor arcs: 0

variable input arcs: 0

variable output arcs: 0

variable inhibitor arcs: 0

==========================================================================

RG:

==========================================================================

tangible markings: 16

vanishing markings: 3

marking-to-marking transitions: 29

==========================================================================

CTMC:

==========================================================================

states: 16

nonzero entries: 26

iterations: 6

precision: 1.13741e-10

==========================================================================

AVERAGE:

==========================================================================

PLACE Pr[nonempty] Av[tokens]

0: p1 1.111110682281e-02 1.118600274565e-02

1: p2 8.888885458146e-03 2.222221364512e-02

2: p3 8.888885458346e-03 2.222221364611e-02

3: p4 9.999996138712e-01 2.988813997254e+00

4: p5 9.888888931772e-01 9.888888931772e-01

TRANSITION Pr[enabled] Av[throughput]

1: t2 8.888885458146e-03 3.999998456166e-01

2: t3 2.222221364661e-03 9.999996140974e-02

3: t4 9.999996138712e-01 9.999996138712e-02

==========================================================================
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