
Software Reengineering Patterns

Rob Pooley (rjp@dcs.ed.ac.uk) and Perdita Stevens

(pxs@dcs.ed.ac.uk)

Department of Computer Science

University of Edinburgh

Kings Buildings

Edinburgh EH9 3JZ

Tel: +44 131 650 5123 Fax: +44 131 667 7209

Abstract. The problem of reengineering of legacy systems, in the widest

sense, is widely recognised as one of the most signi�cant challenges fa-

cing software engineers. So-called legacy systems are normally, but not

necessarily, large systems built in an era before encapsulation and com-

ponentisation were regarded as fundamental tenets of design. Through

a gradual process of accretion and change, they have become devoid

of useful structure. This makes them hard, expensive or impossible to

modify in order to meet changes in the business processes. Legacy sys-

tems, whilst often essential to the running of an organisation, also inhibit

change in that organisation. The problems of legacy systems are not lim-

ited to any one kind of organisation: large corporations and SMEs both

su�er. Moreover, there seems no reason to be con�dent that today's

new systems are not also tomorrow's legacy systems. The problem of

reengineering legacy systems is probably here to stay.

In this paper we introduce the idea of software reengineering patterns,

which adapt the ideas of design patterns to identify lessons in successful

reengineering projects and to make these lessons available to new pro-

jects. This is done in the context of component based reengineering,

which has been the focus of considerable hope in the reengineering com-

munity, but which has delivered limited successes so far. These ideas

are developed in terms of some introductory examples taken from real

projects.

1 Introduction

Our aim is to understand the way in which experienced software

practitioners undertake the component-based reengineering of legacy

systems, so that we can develop better techniques and material for

transferring expertise.

There is a great deal of expertise, in UK industry and elsewhere,

but the nature of that expertise is too little understood, especially

when it deals with systems whose structure must be incrementally



improved, not abandoned. This is a problem, because the task of

helping comparative novices to learn quickly to behave like experts

relies on an understanding of expertise. In software design [5] etc.,

the term pattern has been imported from architecture to describe

an application of an expert solution to a common problem in con-

text. Learning the pattern includes understanding the context, the

problem, the solution, and its merits and demerits relative to other

solutions. Patterns have been adopted enthusiastically by software

practitioners because a pattern is an e�ectively transferable unit of

expertise. The vocabulary provided by patterns is also an aid to

discussion and clear thought, by experts as well as novices.

The context of a reengineering pattern must of course be much

broader than that of a design pattern, including business context as

well as software context. We believe that with the help of industry

experts it will be possible to identify such reengineering patterns,

and that the bene�cial e�ects of doing so will be both profound and

wide-ranging.

Speci�cally, we aim:

{ To identify a collection of important, validated reengineering pat-

terns;

{ To establish that the pattern paradigm is useful in reengineering.

We do not expect to develop a comprehensive pattern language

immediately. However, we believe that if we can identify and dis-

seminate the idea and some important patterns, then the urgency of

the problem and the nature of the software engineering community

will cause the work of identifying reengineering patterns to continue

beyond our immediate project, with escalating bene�ts. The model

of the adoption of design patterns shows that this is possible.

Thus, our work relates principally to the understanding, meth-

ods and strategies that experts already have for the problems of

reengineering and these are what our patterns must describe.

1.1 Legacy systems

The problems that legacy systems pose in the UK and elsewhere

are well known. Brodie and Stonebreaker[3] de�ne a legacy system

as one that signi�cantly resists modi�cation and evolution to meet



new and constantly changing business requirements, regardless of

the technology from which it is built. We wish to emphasise that

not all legacy systems consist of millions of lines of COBOL.

The most widely researched and best-understood approach to

reengineering legacy systems is \cold turkey" - the legacy system

is replaced by a new system with the same or improved functional-

ity. Indeed, many specialist companies make their livings from such

work. Unfortunately, however, for a high proportion of large legacy

systems such an approach is utterly infeasible. The risks of making

such a huge change in a single step - including that business require-

ments inevitably change during the reengineering project itself - are

daunting. Even more concretely, where a legacy system controls a

large amount of mission critical data, the downtime that would be re-

quired for the cut-over, including the inevitable data scrubbing, may

in itself be so unacceptable as to rule out cold turkey. Therefore, in

many cases, an incremental approach may be essential.

1.2 Component-based reengineering (CBRE)

We have already implicitly distinguished reengineering from other

kinds of modi�cation. The main di�erences are:

{ The reengineered system is supposed to be based on the engineer-

ing principles currently believed to be most sound. In software,

this means, in our view, that it is component-based It is now al-

most universally accepted that a system that consists of a loosely

coupled collection of highly cohesive components is easier to ad-

apt than one that is not

1

.

{ The architecture and high-level design of the reengineered system

are not identical with that of the original system: that is, the

work cannot be regarded as routine maintenance.

1

Unfortunately the best currently available de�nition of component seems to be \an

easily replaceable part of a system" { that is, a component has the desired property

by de�nition, if not by construction.



2 Application of CBRE to legacy systems

2.1 Motivation

The reason for undertaking reengineering is generally characterised

as \business process change". Such change imposes new require-

ments on systems and imposes penalties in terms of inability to take

advantage of new opportunities and to meet new obligations. We in-

clude in business process change, not only changes over time within

one organisation, but also the situation - presenting many of the

same problems - in which a system developed in one organisation is

to be used in another.

Even when they work in organisations that, corporately, have a

great deal of expertise and experience in evolutionary reengineering

of systems to support business process change, software engineers

have great di�culty in becoming expert. There is a shortage of

books, papers and training courses that can e�ectively transfer ap-

plicable expertise (see section 3 below). Experts in reengineering

are much rarer than are experts in design, and engineers in most

SMEs will not have access to anyone with a signi�cant amount of

experience.

In software design, the major bene�ts of patterns are that they

are small and speci�c enough for the community to validate them

e�ectively, and also to function as useful learning units, whilst re-

maining abstract enough to apply in a variety of situations. We

believe that the same bene�ts will accrue { and possible be even

more important { from the identi�cation of reengineering patterns.

This view has been con�rmed by our initial contacts with senior

technical managers in industry. It is clear that there are patterns

- i.e. situations which commonly arise and which are recognisable

(consciously or unconsciously) to an expert and where the advant-

ages and disadvantages of a particular solution are well understood

by that expert. Furthermore, it is equally clear that some people

are better able than others to talk in the somewhat abstract terms

that describe such patterns. However, there seems to be no existing

\pattern culture" for reengineering, so far as we have been able to

�nd out, anywhere in industry.



2.2 A simple example

Let us begin with a simple concrete example: our initial contact

with a major communications company suggested the following �rst

draft of a potential reengineering pattern. This strategic, high-level

example illustrates the conceptual di�erence between a design pat-

tern and a reengineering pattern; other reengineering patterns could

be more tactical, dealing for example with how to undertake com-

ponentisation in particular circumstances. This sort of reengineering

pattern would be more closely akin to design patterns; indeed classi-

�cation might sometimes be subjective. Further examples are given

in Section 5 below.

Name: Divide and Modernise (might be revised on greater under-

standing)

Context: a legacy system whose technology (e.g. database) is ob-

solete and soon to be unsupported. An identi�able area of func-

tionality, relatively well localised in the legacy system, of which

a generalisation would be useful, but is not immediately mission

critical.

Problem: Modi�cation of a dying legacy system is undesirable.

Wrapping the system, sometimes useful, is not a good solution

here because it perpetuates the use of unsupported technology. If

a new system is developed \from scratch" to replace part of the

old, the developers will be expected to provide ideal functional-

ity: it will be impossible to manage expectations and the project

will become huge and correspondingly risky.

Solution: Begin by mechanically translating the relevant part of

the database to a modern format. Rewrite the relevant code

without yet attempting to change its structure, thus acquiring

a new system providing part of the functionality of the old, but

no more, and without substantially di�erent structure from the

part of the old system. Remove the now redundant data and

code from the rest of the legacy system, handling the consistency

and gateway issues. Then consider the reengineering of the now-

separated, manageably sized system.

Consequences: Work proceeds in distinct manageable phases. Even

if \requirements explosion" does overtake the �nal restructuring



step, the main aim, that of removing the dependency of the func-

tionality on the obsolete technology, will have been achieved.

Major outstanding questions include: in which cases can the

problem of data dependencies between the new and the old system be

solved, and how? Under what [business? technical?] circumstances

is the restructuring of the new system [politically? technically?] pos-

sible and/or desirable?

3 Relationship to past and current research

The two main areas we have to consider are reengineering, particu-

larly evolutionary reengineering, and patterns. To take the second

�rst: even though patterns are a rather new import to software en-

gineering, there is already a thriving patterns community, including

a newly founded BCS Patterns Special Interest Group, and several

active mailing lists. Some of the problems we shall face - in particu-

lar, that of �nding the right level of abstraction at which to describe

patterns - are generic pattern problems, and interaction with the

pattern community will be invaluable.

In reengineering the situation is less healthy. There is a large

amount of successful technical work on reverse engineering, and ap-

plications of this to \cold turkey" are straightforward. In recent

years it has been widely accepted in principle that reengineering

usually needs to be evolutionary, but to date, work in this area has

been less successful. A symptom of this is that UK (and other)

software engineers, including those in successful software organisa-

tions, still face great di�culties in learning e�ective techniques for

evolutionary reengineering.

Brodie and Stonebreaker's useful book [3] discusses the prob-

lem in highly pragmatic detail, and proposes an 11-step \Chicken

Little" methodology for evolutionary reengineering. It is character-

istic of work in this area, though, that although this book proposes

a methodology, its real usefulness lies in wisdom it imparts in the

process of describing the methodology. This is unsurprising, since

the contexts in which reengineering takes place vary so widely that

it is di�cult to imagine what a reengineering methodology, with a

breadth of applicability and perceived successfulness comparable to



present day development methodologies for new systems, would look

like.

There are several projects worldwide currently seeking to de-

velop such methodologies (including the ESPRIT RENAISSANCE

project, which involves Lancaster University): but their task is ex-

tremely hard, and it is not clear whether they will ever bear fruit.

We think that such projects would be well complemented by context-

dependent techniques such as the identi�cation of particular reen-

gineering patterns (just as design patterns complement design meth-

odologies).

Work which we consider would provide useful input to ours in-

cludes [3] makes a contribution to the problem of how to recognise

whether evolutionary reengineering of a system is possible, and [2]

which gives checklists of aspects of the environment which must be

considered. Refactoring techniques discussed for example in [6] are

relevant, though they have mostly been applied to comparatively

small systems and it is not yet clear how far they can be extended.

Most interestingly, recent work by O'Callaghan, at De Montfort Uni-

versity, in collaboration with BT, has considered the application of

design patterns to migration to object technology: we expect there

to be synergy with his work.

It seems clear that the time is ripe for identifying software reen-

gineering patterns, but there seems to be no previous work on this

speci�c topic The term \reengineering pattern" has already been

coined by Michael Beedle in [1]. However, his work deals with pat-

terns for BPR, not with the speci�c problems of systems reengineer-

ing { and is in any case somewhat preliminary.

4 Research methods used

It is vital that the patterns we identify and disseminate should be

valid, in the sense that they really do describe expert solutions to

problems that genuinely occur commonly. To ensure this, we need to

make use of our collaborators' experts, and also of the wider software

engineering community. We are using a variety of techniques:

1. Study of particular projects in industrial collaborators, using

some or all of the tactics:



(a) Take part in and contribute to informal discussions of the

project as it proceeds;

(b) Attend design reviews and other meetings of the project;

(c) Interview a senior designer on a project about the strategy

they are adopting in the reengineering of a system, and why;

(d) Interview both senior decision-makers and junior engineers,

at various stages of the project, about the progress of the

project.

2. We expect the �rst two techniques to be the most useful, since

they will not a�ect the progress of the projects adversely. Taking

people away from their project work to be interviewed is unlikely

to be practicable at the most interesting stages of the projects!

3. We will observe the problems that arise and the tactics that the

project team use to address them, paying particular attention to

any areas where the behaviour of the team seems to deviate from

the strategy planned in advance.

4. Undertake a series of interviews of experienced designers, aiming

to identify the patterns that they consciously or unconsciously

use.

5. Solicit input and comments from the reengineering community

and the patterns community at large, making appropriate use of

workshops, conferences, mailing lists and newsgroups.

This process is as iterative as time and available projects permit.

We try to draft candidate patterns based both on our observations

and on what the experts tell us. We then test these candidates

by observing whether they occur in the later projects we observe,

and by discussing them with other designers. As software engineers

ourselves, we are able to draw on our own experience, but this is not

su�cient in itself to test candidates.

5 Further examples

The examples in this section relate a group who reengineered a set

of existing programming language compilers, to produce a compon-

ent based portable compiler suite. The work occupied a number of

years and occurred in several stages. New requirements emerged as



the demands of both processor manufacturers and compiler users

changed.

This work bene�ted from the clear understanding of modular-

ity in compilers, based on successive translation stages. This meant

that, although no e�ort had been made in writing the existing sys-

tems to ensure low cohesion, it was comparatively easy to believe

that this would prove possible to achieve.

The patterns proposed here are both closely related to possible

design patterns which would emerge in constructing similar systems

from scratch, since the reengineering pattern can be thought of as a

reason for selecting a design pattern from among candidates.

5.1 A �rst example - Externalising an internal

representation

Name: Externalising an internal representation

Context: A new, optional intermediate phase or set of phases is

required in a system. The addition is to be made at the inter-

face between two existing phases. Phases are entered under the

control of a driver program, which is easily modi�ed to invoke

additional processing phases.

Problem: The system must still operate as before if the optional

phase(s) is (are) not selected. Currently the system can use an

internal representation to transfer data between the two phases.

The new system requires this private format to be usable by

phases that may be added in future.

Solution: Replace the internal format with an externally de�ned

one, open to use by new phases. Record the output of the earlier

of the existing phases in an easily readable medium, such as a �le

or a database. Ensure that any modi�cations performed by the

new phases leave their output in the same format. Modify the

existing phases to output and input the new format.

Consequences: The generation of an externally readable version

of the representation allows new modules to be attached with

no further alteration of the existing system. This may be slower

than the original system when the new options are not selected,

but creates a very open system.



5.2 A second example - Portability through backend

abstraction

Name: Portability through backend abstraction

Context: A pair of stand-alone legacy systems whose current target

(e.g. processor instruction set) is about to become a set of targets.

Their main functionality, producing one of this set of targets from

distinct inputs, is logically equivalent. It is anticipated that new

targets will continue to emerge frequently.

Problem: Modi�cation of a working legacy system is undesirable.

Wrapping the system, sometimes useful, is not a good solution

here because involves additional translations, from the old target

to the new one, which are not easily de�ned and appear to be

very error prone. If a new system is developed \from scratch" for

each new target, the developers will be expected to meet demands

from a rapidly evolving set of target projects.

Solution: Rewrite the current systems, preserving intact their ex-

isting front ends, but disentangling their backends. Ignore the

low level formats, which are the ultimate targets and de�ne an

abstract target, suitable for both easy translation from the front

ends and easy translation to the targets. At the same time pro-

duce translators from this abstract intermediate code to the cur-

rently urgent targets. Do not modify the current working system

for the old target at this stage, but begin work, in parallel and

at lower priority, on a backend translator for this also.

Consequences: At worst the reengineering of the existing systems

is no worse than writing new systems from scratch for one new

target. In practice it is likely to be less costly, since the abstract

target is chosen in part to be easy to translate to. Work on the

backend translators will involve some extra overhead in the case

of a single new target, but will represent a signi�cant gain for

the second target. Future retargetting will be quicker, easier and

more exible. The quality of the backends will be higher since

more resources will be freed to devote to this stage.

6 Conclusions

This paper has proposed reengineering patterns as a way of codify-

ing and disseminating good practice in software reengineering. Based



on some early candidate patterns, we believe that this approach is

extremely promising. The important additional feature of a reengin-

eering pattern is, perhaps, that it deals with the reason or reasons

for selecting a strategy, rather than simply identifying a good design

pattern. The best design for a reengineered system may not be

achievable in practice, but a sensible compromise may be available.

There is clearly much to be done to develop this suggestion to

be fully usable. In publishing these early candidates, we hope to

stimulate discussion and criticism. The principal questions at this

point are:

1. Is the patterns approach applicable to reengineering?

2. Are the patterns put forward here of the right sort or should we

look at alternatives?

3. What other candidates are there?

4. How can we validate candidate patterns?

We hope that a debate around these issues can begin. Our inten-

tion is to start a collection of patterns on our reengineering patterns

Website. You are invited to send comments and proposals to the

authors and to consult

http://www.dcs.ed.ac.uk/home/pxs/reengineering-patterns.html.

References

1. Beedle, Michael \Pattern Based Reengineering", Object Magazine, 1997

2. Bergey, John K., Northrup, Linda M., and Smith, Dennis B. \Enterprise Framework

for the Disciplined Evolution of Legacy Systems", Technical Report CMU/SEI-97-

TR-007 (1997)

3. Brodie, Michael L., and Stonebraker, Michael \Migrating Legacy Systems: Gate-

ways, Interfaces and the Incremental Approach", Morgan-Kaufman Publishers

(1995)

4. Brown, Alan W., Morris, Ed J., and Tilley, Scott R. \Assessing the Evolvability of

a Legacy System", CMU SEI draft white paper, 1996

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J. \Design Patterns: Elements of Re-

usable Object-Oriented Software", Addison-Wesley Professional Computing series,

1994

6. Opdyke, William Object-Oriented \Refactoring, Legacy Constraints and Reuse",

presented at 8th Workshop on Institutionalizing Software Reuse (1996)

Links to on-line versions, where available, are at our Web site:

http://www.dcs.ed.ac.uk/home/pxs/sweng.html


