
HASE: An Environment for

Hardware/Software Codesign

P.S. Coe, R.N. Ibbett, N. Ra�erty & L.M. Williams

Technical Report CSG-41-98

Department of Computer Science

University of Edinburgh

March 17, 1998

Abstract: Hardware/software codesign has recently become an explicit topic in

computer research circles, although it has been an implicit part of many projects

for several decades. Tools are required to aid designers to follow codesign practices

and methodologies, enabling software and hardware designers to work within a uni-

�ed environment when creating a system. The Hierarchical Architecture design and

Simulation Environment, HASE which allows rapid development and exploration of

computer architectures encompassing both hardware and software, will be discussed

as a tool to be used as a basis for such an environment. Example systems are also

presented to highlight the features of HASE.

Introduction

Hardware/software codesign has recently become an explicit topic in computer research

circles, although it has been an implicit part of many projects for several decades. Codesign

is a concurrent approach to systems design and there are several key issues to be addressed,

these are speci�cation, partitioning, synthesis, simulation and design-space exploration.

Most systems are designed by applying these issues separately to the design of the hardware

and the software. Codesign methodologies and environments attempt to merge these design

paths so that expensive mistakes are not made when assigning components to hardware and

software. Due to the merging of design paths new environments and tool sets have to be

designed to enable the speci�cation, simulation, testing and synthesis of both hardware and

software to be made simultaneously. This would enable designers to explore a wider range

of possible tradeo�s when designing the system, which should result in better designs, more

1



e�cient implementations, better interfaces between hardware and software components and

shorter design times.

This paper outlines the HASE system and some of its features that could provide a basis

of a hardware software codesign environment. Some of the more recent projects carried

out within HASE are discussed, emphasising many of its useful features when designing

and evaluating systems. Possible developments and future extensions to the system are

also presented.

Overview of HASE

The Hierarchical computer Architecture design and Simulation Environment (HASE) de-

veloped at the University of Edinburgh allows rapid development and exploration of com-

puter architectures at multiple levels of abstraction, encompassing both hardware and

software. The system was intended to be used as a tool for computer architecture de-

signers to aid in the development and exploration of new architectures. Although other

uses have been suggested, including, incorporating it into the Integrated Learning Support

Environment (ILSE) which is an online teaching environment for computer architecture.

HASE would enable animations of di�erent architectural concepts, this work lead to the

development of simjava [1], which allows simulations and animations to be included in web

pages. The main features of the HASE environment include a Entity Description Lan-

guage, EDL [2] for project data storage and libraries, a simulation engine, a hierarchical

method of model representation, a visualisation mechanism and results gathering tools.

Figure 1 shows the main components of the HASE system and how they interact with each

other.

The EDL de�nitions of the architecture components provide information about ar-

chitecture parameter de�nitions, component parameters and ports, hierarchical on-screen

structure, global system parameters and component interconnect. Prede�ned multipro-

cessor topology templates are also included in EDL to aid in the rapid development and

exploration of multiprocessor networks. This description when combined with the En-

tity Layout �le containing display information completely describes the architecture to be

simulated.

Once the architecture is loaded into HASE from an EDL �le, the simulation executable

can be generated by combining the architecture information and user de�ned parameters

with the individual component behavioural descriptions. This simulation executable can

then be executed with various input parameters speci�ed in the architecture descriptions

and any pieces of code loaded into memory components. There are two simulation engines

used at present, SIM++ [3] and HASE++ [4], although additional languages can be easily

2



Project

Storage

EDL

Description
EDL

Description
EDL

Description
EDL

Description

ELF

Description
ELF

Description
ELF

Description
ELF

Description

HASE

Internal Model

Representation

Code Generation

Simulation

Executable

ELF

Description
ELF

Description
ELF

Description
User

Parameters

Trace File

Animator

Experiment

Control

Run

Settings

ELF

Description
ELF

Description
ELF

DescriptionUser Code

EDL

Parser

Graphical Design Window

Compilation

Figure 1: HASE Software Architecture

incorporated, for example, VHDL is a likely candidate for some future project.

The results gathering tools enable automatic, repeated execution of the simulation using

di�erent input parameter values and memory �les and allow graphs of the components'

output values over single or repeated simulation executions to be drawn.

The visualisation mechanism allows the graphical display of an architectural model to

be animated by reading in trace �les generated by the simulation execution, thus enabling

the designer to inspect the model for correct operation. The hierarchical nature of HASE

controls the displayed complexity of the simulation, according to the areas of the model

being concentrated on. It is also possible to animate the simulation as it progresses, remov-

ing the need for a trace �le. Although this slows down the simulation as it has to wait for

the animation for each stage to complete before progressing, it does provide the designer

with the ability to adjust architectural parameters while the simulation is in progress. En-

3



abling the immediate e�ects of the parameter change to be monitored without the need to

regenerate the entire trace �le. Possible examples of interactive adjustments could include

interactively removing nodes in a network to monitor fault tolerance, changing parameters

of individual components, for example, cache speed to study the e�ects on performance and

modifying contents of registers and memory components to create program breakpoints.

There are �ve modes of operation in HASE (1) Design (2) Model Validation (3) Build

Simulation (4) Simulate System and (5) Experiment with system. Each mode provides the

designer with a di�erent set of menu options allowing di�erent operations to be performed.

The current active mode also determines the functionality of the menus attached to com-

ponents, for example, when in Simulate System mode, memory components have an option

to load new code. Figure 2 shows the main HASE window, containing a multiprocessor

network shown at multiple levels of abstraction.

HASE and Hardware/Software Codesign

There are several features of HASE which make it a suitable system to be used for the

exploration of a variety of di�erent trade-o�s within a codesign methodology.

Cosimulation, the ability to include hardware and software components of a system

design in a simulation, is an important feature of HASE. The software components are

usually included by loading the required code into a memory component, and then ex-

ecuting the code through a processor component. The generation of template machine

description �les for the GNU C/C++ compiler is currently being investigated. This would

partially automate the process of software generation for experimental hardware, remov-

ing the need for the designer to continually write code in assembly language native to

the hardware. The level of detail at which the processor and memory components are

simulated a�ects the balance between the accuracy and speed of the simulation, as well

as the complexity of the code. The ability of HASE to deal with these di�erent levels of

component abstraction is another useful feature of the environment.

The ability of HASE to simulate at a high level of design abstraction, i.e., before the

partitioning stage, is a another useful feature for a codesign environment, as it allows a

general system design to be created and simulated before deciding on particular implement-

ations for individual components. The EDL provides a mechanism for specify components

of a system, what parameters they possess and how they are connected together without as-

suming any implementation details. Once constructed, high level behavioural descriptions

can be written for each of the system components in HASE++, again without assuming

any implementation details. The animation facilities and results gathering tools aid the

designer in identifying major design aws and di�culties before continuing with the design

4



Figure 2: Main HASE Window

process.

The use of EDL as the system speci�cation language allows external algorithms to be

applied to the system speci�cation, for example, model validation and hardware/software

partitioning. There are many partitioning algorithms appearing [5, 6, 7], these could

be evaluated by applying them to the EDL and them simulating the resulting system

implementation in HASE, providing relevant hardware and software implementations of

all the components available.

The large design space for a particular system can be explored through the use of para-

meterised components and component libraries. These parameterised components enable

changes to the architecture design and/or hardware/software partition to be made quickly

and easily. The ability to change and experiment with these parameters and monitor the ef-

5



fects whilst the simulation is running, provides the designer with instant feedback on these

adjustments without the need to rerun the entire system simulation. There are features

of the results gathering tools that also allow the design space to be explored quickly. In

particular the ability to execute repeated simulation runs automatically, using a di�erent

input parameter value in each run and to automatically plot graphs of output parameters

as functions of the varying inputs.

Applications of HASE

There is a wide range of applications for which HASE is a suitable design tool, e.g. in-

dividual components of a microprocessor, memory hierarchies and complete systems and

networks that contain one or more processors.

Motorola M68HC08

A fully functional simulation of the Motorola M68HC08 micro controller unit has also been

produced [8]. This can be used as a basis for demonstrating possible hardware/software

trade-o�s within a micro controller. Figure 3 shows the HASE architectural representation

of two of these micro controllers connected together. The simulation addressed the follow-

ing areas of the micro controller design (a) memory con�guration (b) interrupt processing

(c) instruction set execution and (d) asynchronous I/O processing. The simulation has

been developed in modules starting with a basic CPU/Memory model and extending it to

include the system integration module, I/O and external interrupts.

The architecture representation shown in Figure 3 illustrates several of the features of

the HASE system. The two micro controllers are displayed at di�erent hierarchical levels,

one showing the connections between memory, system integration module and CPU and

the other a more detailed view of the CPU components and parameters. During animation

of the system, information packets are shown passing between components, parameters are

changed and memory contents are updated.

A small set of simple experiments has been performed on this model including (i)

an analysis of how the performance of the memory e�ects the execution times of simple

programs, (ii) simple code optimisations by examining program execution and adjusting

the operation of the micro controller accordingly, and (iii) instruction usage measurements.

6



Figure 3: Two M68HC08 micro controllers

Other Architectures

Some of the other systems simulated recently include the Stanford DASH architecture [9],

the Hierarchical PRAM [10] model of parallel computation and a PC memory hierarchy

system.

The Stanford DASH architecture was designed to be a scalable high performance ma-

chine with multiple coherent caches and a single address space. The HASE simulation

concentrated on implementing and illustrating the cache coherency protocols.

The Hierarchical PRAM model of parallel computation was simulated on a 2D mesh.

The goals of this project were to investigate the scalability and e�ciency with which

this model of computation might be implemented on realistic parallel architectures. The

7



investigation involved simulating the H-PRAM on a 2D mesh of processors and the parallel

programming language H-FORK (a derivative of FORK) which allowed complete programs

to be studied.

The PC simulation project used HASE to simulate aspects of a PC architecture. The

two aspects concentrated on were the cache and hard disk systems. The project investigated

the performance of the architecture for di�erent cache and hard disk parameters.

System Evaluation

Studies of some real systems are currently being started, in which the evaluation of hard-

ware/software trade-o�s will be performed. These systems will contain many di�erent

types of components with a wide variety of possible algorithms and implementations. Ex-

ample applications could include printer and disk controllers, graphics/image processing

hardware or components of larger systems and networks, for example, bridges and routers.

To this end a fully parameterised, generic memory hierarchy, with optional optimisations

and con�gurable bus connections is being developed, as almost all systems that are to be

investigated will contain some form of memory hierarchy.

Future Work

One of the main tasks to be carried out in the future is the development of more systems

to illustrate hardware/software codesign techniques and methodologies, and to show that

the application of these approaches to system design can result in improved performance,

cost, reliability and power consumption.

The addition of other simulation languages, especially one capable of simulating VHDL,

would prove a useful asset if HASE is to be used as a basis for a codesign environment. This

would enable hardware synthesis and layout tools to be used to gain important information

about the cost and power consumption of hardware components, as this information is, in

most cases, vital to system design.

There are two aspects related to the hierarchical nature of HASE. The �rst, controlling

on-screen simulation complexity, has already been included and utilised in many projects.

The second area, hierarchical simulation, currently requires designers to write code at

di�erent levels of abstraction and select an appropriate level from within the HASE en-

vironment. The problems with providing environmental support for code abstraction are

currently the subject of a PhD project.

8



The areas being investigated by this project include:

� The provision of entity linkage abstractions. By providing an abstract speci�cation

of how entities in a model are linked together we hope to provide a `plug and play'

framework for simulation model construction. Such a system would allow components

in a simulation to be swapped for alternate simulation entities with the minimum

of programming overhead. This would prove especially useful in CoDesign related

simulation as it would facilitate the rapid interchange of entities representing both

hardware and software based solutions.

� The creation of speci�c abstractions for common architectural components (memor-

ies, processors, switches etc).

� The generation of heuristics governing the use of abstraction in di�erent architectural

contexts. This work is also being used to create model validation techniques to check

that components are interfaced together correctly.

References

[1] R. McNab and F. Howell, \Using Java for Discrete Event Simulation," in Twelfth UK

Computer and Telecommunications Performance Engineering Workshop (UKPEW),

(University of Edinburgh), pp. 219{228, 1996.

[2] P. Coe, Entity Description Language Manual. Computer Systems Group, Department

of Computer Science, University of Edinburgh, Kings Buildings, Edinburgh, March

1997.

[3] JADE Simulations International Corporation, SIM++. A Discrete Event Simulation

Language, 1991.

[4] F. Howell, \HASE++. A Discrete Event Simulation Library for C++." Version 0.1,

1996.

[5] A. Kalavade and E. Lee, \A Global Critically/Local Phase Driven Algorithm for

Constrained Hardware/Software Partitioing," in 3rd Internation Workshop on Hard-

ware/Software Codesign (Grenoble, France), pp. 42{48, IEEE Computing Society

Press, Los Alamitos, CA, USA, September 1994.

[6] R. Gupta and G. DeMicheli, \Hardware-Software Cosynthesis for Digital Systems,"

IEEE Design and Test of Computers, vol. 10, pp. 29{41, September 1993.

[7] R. Ernst, J. Henkel, and T. Benner, \Hardware-Software Cosynthesis for Micro Con-

trollers," IEEE Design and Test of Computers, pp. 64{75, December 1993.

9



[8] N. Ra�erty, \A Software Simulator for the Motorola M68HC08 Micro-Controller

Unit." 4th Year Project Report, University of Edinburgh, June 1997.

[9] L. Williams and R. Ibbett, \Simulating the DASH Architecture in HASE," in The 29th

Annual Simulation Symposium (New Orleans, Lousiana), (IEEE Computing Society

Press, Los Alamitos, CA, USA), pp. 137{146, 1996 1996.

[10] G. Chochia, M. Cole, and T. Heywood, \Implementing the Hierarchical PRAM on

the 2D Mesh: Analyses and Experiments," in 7th IEEE Symposium on Parallel and

Distributed Processing (San Antonio), 1995.

10


