
The Use of Caching in Decoupled

Multiprocessors with Shared Memory

Tim Harris and Nigel Topham

University of Edinburgh

Abstract

In the following we evaluate the costs and bene�ts of using a cache

memory with a decoupled architecture supporting shared memory in both

the uniprocessor and multiprocessor cases. Firstly we identify the perform-

ance bottleneck of such architectures, which we de�ne as Loss of Decoupling

costs. We show that in both uniprocessors and multiprocessor machines

with high latency such costs can greatly e�ect performance. We then assess

the ability of cache to reduce loss of decoupling costs in both uniprocessors

and multiprocessors. Through use of graphical tools we provide an intu-

ition as to the behaviour of such decoupled machines. In multiprocessors we

de�ne the target model of shared memory and introduce various coherency

schemes to implement the model. Each coherency scheme is then evaluated

experimentally. We show that hardware coherence schemes can improve

the performance of such architectures, though the relationship between hit

rate and performance is substantially di�erent than in the non-decoupled

case. Our results are based on discrete-event simulations which take as

input address traces from various scienti�c applications.

1 Introduction

Though Shared Memory has proven an e�ective programming model for parallel

machines, there are still open questions as to the best way to implement the model

e�ciently so that it can be scaled to a large number of processors. Such a machine

will by necessity have memory distributed among the nodes, and we can expect

the latency of memory access to be substantially larger than the amount of time

1

required to perform a simple computation. To provide reasonable performance

for such a model both latency reducing and latency tolerating techniques may be

necessary.

In this paper we focus on the latency tolerating technique of decoupling. Sub-

stantial work has previously considered decoupling in various contexts. In [1] a

VLSI decoupled architecture was compared to a traditional architecture while al-

tering the speed of memory. In [2] a decoupled machine with interleaved memory

was compared with the CRAY-1 architecture. In the related work of [3] decoupled

architectures were shown to be insensitive to memory latency when performing

optimally. In the recent work of [4] decoupled architectures are compared against

traditional uniprocessor systems with caches. Although one of the stated goals

of that paper was to consider use of cache in decoupled architecture, very few

such results were presented and the authors conclude only that caching has some

potential for such machines.

The goals of this paper are to consider indepth the value of caching in decoupled

architectures, and we present the �rst results to consider multiprocessor decoupled

architectures which support shared memory. We �rst begin by identifying the

salient features of decoupled performance, namely the Loss of Decoupling events

which occur when the latency tolerating ability of the architectures is temporarily

curtailed. We use graphical results from our simulator to develop an intuition of

decoupled execution and the role such events play. We then quantify the bene�ts

that can be achieved through use of caching in a decoupled uniprocessor for a suite

of applications; also explaining when those bene�ts can be expected to be accrued.

We then describe various schemes for maintaining coherency in a multiprocessor

decoupled system supporting a weakly coherent model of shared memory, and

evaluate the performance of each scheme. Our results show that caching often

provides substantial bene�ts in both the uniprocessor and multiprocessor cases,

but that the relationship between hit ratio for a caching scheme and subsequent

performance is more involved than in the case of traditional architectures. In the

case of multiprocessors, it is only the more expensive coherency schemes, yielding

high hit rates, that are able to achieve substantial performance gains.

2 Architectural Assumptions

The basic idea of a decoupled architecture is to divide the instruction stream

produced by the compiler into two sub-streams; one that is entirely addressing

2

and memory fetch instructions and the other that is entirely computations. These

two streams are then executed in parallel by two separate processors, with the

memory fetch operations being being pipelined as much as the memory system

architecture permits.

A simple diagram our assumed architecture is shown in �gure 1. The address

stream is executed by the Address Unit, or AU, while the computation stream is

executed by the Data Unit or DU. To execute a Load instruction from its stream

the AUwill calculate the load address and then put the request to memory into the

Load Address Queue (LAQ). This request will then be serviced by main memory,

with the resulting operand being placed in the Load Data Queue (LDQ). At the

initiation of a program the DU will initially stall until su�cient operands arrive

in the Load Data Queue such that the �rst computation may be initiated. In the

meantime, the AU will continue to issue requests to memory and ideally operands

will begin to arrive in the LDQ at a steady rate after this initial memory latency.

To execute a store the DU places an operand in the Store Data Queue (SDQ),

while the AU places the store address in the Store Address Queue, and when both

items are in their respective queues the request is forwarded to memory.

Address
 Unit

Data
Unit

LDQ

SDQSAQ

LAQ

Main Memory

Cache Memory

Figure 1: A Decoupled Architecture Model with Cache.

Ideal execution in such an architecture occurs when the DU is able to process

data at its maximum rate, then the operands it requires will have been requested

early enough by the AU that they will already be in the LDQ when required.

In this sense the AU can be seen as a form of prefetch engine for the DU, and

during this type of execution the latency of the memory system is fully tolerated

[3]. The term decoupled refers to the fact that the time an AU fetches an operand

is decoupled from the time that operand is used for a computation in the DU.

3

Most applications also require that the AU and DU periodically synchronize; an

event called a Loss of Decoupling or LOD [5]. A loss of decoupling will take place

at conditional jumps, for example, when the AU will need a result from the DU

to determine the next instruction to be executed. Various coherency operations

in multiprocessors will also cause an LOD. After an LOD the DU must again wait

for the full latency of the memory system before executing its next computation

and becoming decoupled again. For this reason we de�ne any time that the DU is

waiting for an operand to arrive in the LDQ as an LOD cost, and it is these costs

that are the primary concern of our analysis. In �gure 1 we also show the cache

memory we assume in later sections of the paper. When a cache is present the AU

will always attempt to fetch operands directly from the cache and into the LDQ.

We assume a write-through and write-allocate scheme.

3 The Simulation

The experimental results described in this report have been generated by trace-

driven discrete-event simulations. The input for the simulation consist of two

traces of instructions, one of which contains AU instructions such as address cal-

culations and memory fetches for given addresses, and the other of which contains

DU instructions such as oating point operations and memory stores. These traces

were generated by annotating programs such that the annotations compute the

instruction streams which are then written to the trace �le during program exe-

cution. The traces we have generated are parallel traces, where each instruction

has a processor number to specify which processor is to execute the instruction.

These processor IDs are generated by the annotation in a simple �ne-grain man-

ner, typically by using the induction variable of a do loop modulo the number of

processors in the machine. The grain of work allocated to a processor is typically

on the order of a BLAS 1 or BLAS 2 routine.

The applications we have used to generate traces are well-known scienti�c codes

from established benchmarks, all written in Fortran, and all assuming shared

memory in our formulation. The most well know is the Linpack benchmark, a

linear algebra subroutine designed to factor a dense matrix into its lower and upper

triangular components. This is a particularly oating point intensive application,

though the size of the loops varies from the full width of the matrix down to very

small inner loops as the target matrix becomes smaller.

The other two codes are both parallel versions of codes taken from the Perfect

4

Club benchmark suite [6]. The TFRD benchmark is a simulation of the behaviour

of two electrons. The most computationally intensive routine, OLDA, performs

integral transformations of four matrices and a transposition. Therefore there

are a fairly large number of memory references per each oating point operation.

The OCEAN benchmark is a uid dynamics application which uses the spectral

method, and is hence dominated by Fast Fourier Transformation (FFT) opera-

tions. This application also has a signi�cant number of instructions which do

nothing but copy data from one data structure to another.

In our simulation we assume an average memory access time of 100 cycles, and

a average cache hit time of 5 cycles. We assume a lightly loaded system in the

sense that we assume shared memory latency will have little variation, and we

neglect contention in the interconnection network in the multiprocessor case.

4 Uniprocessor Performance

To understand the performance of decoupled multiprocessors one must �rst un-

derstand the uniprocessor case. Here we outline what characteristics are typical

of such architectures, and in particular we show quantitative evidence that loss of

decoupling events play a substantial role in performance.

4.1 The Saxe Diagram

The Saxe diagram, introduced in [7], allows one to visualize the behaviour of a

decoupled architecture. Below we show the utility of these diagrams, and we

augment the diagrams with more information which helps provide a concise ex-

planation of cache performance for such architectures. We now use the diagram

to explain normal modes of operation for decoupled architectures.

In �gure 2 we see a uniprocessor decoupled architecture with a \fast" Data

Unit, i.e. a DU which can consume data as fast as it is produced by the AU.

The diagram represents the performance on a small kernel of TFRD code with

approximately 450 operands to be fetched and three Loss of Decoupling events. In

the diagram the �rst (solid) line represents the rate of the AU requesting operands

from the memory system, while the second (dashed) line shows the DU rate of

consumption for these operands.

In this model of a lightly loaded system we expect the memory latency to be

a constant 100 cycles. Therefore we can see that the DU must wait 100 cycles

before beginning execution, as this is the time until the �rst operands arrive in the

5

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600

N
um

be
r

of
 O

pe
ra

tio
ns

 In
iti

at
ed

Time in Cycles

AU Operand Fetch
DU Operand Consume

Figure 2: Example Saxe Diagram for

Uniprocessor.

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 O

pe
ra

tio
ns

 In
iti

at
ed

Time in Cycles

AU Operand Fetch
DU Operand Consume

Figure 3: Same example with slower

DU.

LDQ. After about 130 operands have been fetched by the AU we see the �rst LOD

event. This corresponds to a conditional jump which is based on a result from the

DU. The AU must wait until the result is produced by the DU, about 100 cycles

later, and then it can determine the destination of the jump and begin processing

again. However, the DU will need to wait for the full latency of the memory

system again, as the LDQ will remain empty after an LOD until a request can

make the complete circuit from the AU through the memory system. Therefore

the LOD cost in this case is about 100 cycles. The time when the two lines meet

is naturally the time during which the two processors are synchronized.

If the DU can not consume data as fast as the AU can fetch it, than the DU will

naturally \decouple", in the sense that the data it uses will have been fetched by

the AU long before it was needed. We refer to this as a \slow" DU, as seen in �gure

3. The DU progress may also be slowed down by the nature of the application,

ie. if each operand is reused many times than the consumption rate of operands

by the DU will be slower. However, in current architectures memory systems are

typically the bottleneck, rather than oating point performance. Given that fact

we focus our study in the rest of the paper on the case of a fast DU, in the sense

that we expect the DU to be typically waiting on operands to arrive in the LDQ

rather than consuming operands at a rate slower than they arrive. The case where

the DU consumes operands slower than they arrive may be considered the ideal

case in the sense that such a machine will usually perform well, independent of

other considerations.

6

4.2 LOD Costs

We now show how the inuence of LOD costs varies from application to applic-

ation. In fact, such costs can be used to characterize an applications suitability

for decoupling. The suitability of applications for decoupling has previously been

quantitatively assessed in [5], where various compiler techniques were outlined for

reducing the frequency of LOD events. Here we have �xed the frequency of such

events through extraction of the instruction traces as described earlier, and we

consider the inuence of increasing memory latency on LOD costs for an applica-

tion. In �gure 4 below we show the execution time and LOD costs of the TFRD

application as we increase average memory latency from 20 to 200 cycles. At a

high latency of 200 cycles per memory access more than half the execution time is

attributable to LOD costs. On the other hand, the OCS example of �gure 5 has

very few LOD events and hence even with high latency memory the percentage of

execution time attributable to LOD costs is small. We can see this as an indication

that OCS is an inherently well-suited application for decoupling. TFRD, on the

other hand, is an application which has substantial LOD costs and hence without

caching is poorly suited for these architectures. Applications such as OCS will run

at close to the throughput of the DU, and their performance will not be substan-

tially altered by modi�cation of the memory system. The Linpack application,

which falls in between these two in terms of its frequency of LODs, is shown in

�gure 6.

0

100000

200000

300000

400000

500000

600000

0 20 40 60 80 100120 140 160 180 200

T
im

e
in

 C
yc

le
s

Average Memory Access Time

Execution Times
LOD Costs

Figure 4: TFRD applica-

tion.

0

20000

40000

60000

80000

100000

120000

140000

20 40 60 80 100 120 140 160 180 200

T
im

e
in

 C
yc

le
s

Average Memory Access Time

Execution Times
LOD Costs

Figure 5: OCEAN ap-

plication.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

20 40 60 80 100 120 140 160 180 200

T
im

e
in

 C
yc

le
s

Average Latency of Memory

"Linpack-Exec-Times-vs-Latency"
"Linpack-Stall-Times-vs-Latency"

Figure 6: Linpack applic-

ation.

5 Uniprocessor Caching

The goal of caching in decoupled architectures is to reduce the latency of memory

accesses which are contributing to LOD costs. However, the relationship between

7

hit rate and performance of a decoupled computer is profoundly di�erent than

that of a traditional architecture, as we now show.

Saxe diagrams typically have two lines, one for the AU progress and one for

the DU progress. However, in the case of caching architectures we have found it

useful to augment this with an additional line which represents the arrival time of

an operand in the Load Data Queue. We can expect this line to be close to the

AU line if a fetch results in a cache hit, and far from the AU line in the case of a

cache miss. In the case of a slow DU the two processors will decouple naturally

as the DU spends time computing, but in the time of a fast DU decoupling will

only occur due to LOD costs. In this case the LOD costs experienced by the

DU on a particular loop structure (without embedded LODs) will be equal to the

maximum latency of any one memory fetch. To have LOD costs for a loop equal

to the cache hit time rather than the cache miss time requires that the hit ratio

for that loop is 100 percent. Therefore the overall LOD costs for an application

will not be a simple linear function of hit rate as in traditional architectures, but

instead be a threshold function whereby LOD costs are only reduced if some loop

structures execute with all memory accesses being cache hits.

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700

N
um

be
r

of
 O

pe
ra

tio
ns

 In
iti

at
ed

Time in Cycles

LDQ Arrival Time
AU Request Time

DU Consume Time

Figure 7: Saxe diagram for unipro-

cessor with cache.

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800

N
um

be
r

of
 O

pe
ra

tio
ns

 In
iti

at
ed

Time in Cycles

LDQ Arrival Time
AU Request Time

DU Consume Time

Figure 8: Same as previous �gure but

with lower hit ratio.

This explanation is clari�ed by �gures 7 and 8. Figure 7 represents decoupled

performance on a similar small kernel trace, but with a large cache resulting in a

high hit rate. We see that in the �rst loop the cache is empty and no cache hits

are observed. The decoupling between the AU and DU is the full latency of main

memory, or 100 cycles. In the second loop there is a higher hit ratio, but still

there are periodic misses which force the DU to wait a full latency, so the LOD

costs remain as with no cache. Only in the third loop do we observe a 100 percent

hit rate and hence bene�ts from using a cache. The degree of decoupling between

8

the AU and DU in this �nal loop can be seen to be very small, corresponding to

the 5 cycle cache hit time assumed. Figure 8 shows the same kernel and caching

scheme, but with a smaller hit rate. We see that, though the hit rate of the third

loop appears to be higher than either of the two previous loops, i.e. there are more

hits shown on the LDQ-arrival-time curve, the LOD costs are still the same as if

there was no caching as the DU will need to wait the full latency for whatever

misses do occur.

Of course, a full application will have a large number of such looping structures

and LOD events. The performance of an application will bene�t anytime during

execution a loop runs entirely in cache, and in the case of a slower DU frequently

also if a loop begins with a substantial number of cache hits before encountering

cache misses (allowing the slow DU to naturally decouple). The saxe diagram of a

larger piece of an application will again show the characteristic stair step behaviour

of loop structures and LODs, and the slope of this line will directly reect the

performance of the machine. In �gures 9 and 10 we show such a diagram for trace

of about 8000 operations and show how successful caching techniques result in

steeper progress gradients.

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000

N
um

be
r

of
 O

pe
ra

tio
ns

 In
iti

at
ed

Time in Cycles

LDQ Arrival Time
AU Request Time

DU Consume Time

Figure 9: Caching characteristics with

slightly larger trace.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000120001400016000

N
um

be
r

of
 O

pe
ra

tio
ns

 In
iti

at
ed

Time in Cycles

With Cache
Without Cache

Figure 10: Slope comparison for cache

and no cache.

In �gure 9 we see that approximately two out of three loop structures end up

running totally within cache and how performance improves as a result. Figure

10 shows clearly how reduced LOD costs result in steeper slope curves in the Saxe

diagram and hence better execution time. In particular we observe that with cache

this excerpt completes in roughly 8000 cycles, while without cache it requires over

14000 cycles.

9

6 Uniprocessor Results

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
in

 C
yc

le
s

Cache Size in Lines

Performance With Cache
LOD Costs With Cache

Performance Without Cache

Figure 11: The E�ect of Caching on a Uniprocessor Executing the TFRD Applic-

ation.

We now briey present the result of using caching as described in the three

applications we are considering. Of course, the best bene�ts we can hope for are

to reduce the LOD costs of an application to near zero, so applications with little

LOD delays in the non-cache case will clearly not perform substantially better

than the non-caching case. In �gure 11 we see the e�ects of using caching on an

application with large LOD costs as we vary the number of 4-word lines in the

cache, and again assuming 100 cycle average memory access time. The constant

line is the execution time of the TFRD application with no caching, and the

bottom dotted line is the LOD costs of the application while using caching. We

see that with very small cache sizes the extra overhead of loading cache lines

and overwriting them frequently actually increases execution time. However, with

cache sizes of 500 lines are larger we see substantial bene�ts from cache use. We

see that with a 4K-line cache the LOD cost is reduced to less than 50,000 cycles,

a substantial reduction from the near 200,000 costs shown in �gure 4 above.

Our other two applications are naturally less bound by LOD costs, but still

see performance improvements through the use of cache, as show in �gures 12 and

13. However, in each case we see that the majority of the LOD costs which was

show to exist previously without cache is eliminated.

10

1.8e+06

2e+06

2.2e+06

2.4e+06

2.6e+06

2.8e+06

3e+06

3.2e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
in

 C
yc

le
s

Cache Size in Lines

Performance With Cache
Performance Without Cache

Figure 12: Linpack with Cache.

111000

111500

112000

112500

113000

113500

114000

114500

115000

1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
in

 C
yc

le
s

Cache Size in Lines

Performance With Cache
Performance Without Cache

Figure 13: OCEAN with Cache.

7 Multiprocessor Caching

In caching for multiprocessors the primary concern becomes how to maintain co-

herency given the multiple copies of each line which can potentially exist in various

caches. We now outline the three coherency schemes we evaluate, as well as de-

scribing the speci�c model of shared memory we assume. For a comparison of

various coherency schemes in the context of non-decoupled multiprocessors see

[8].

7.1 Memory Model

We assume a weakly coherent memory model, based on that supported by the

DEC Alpha [9]. The Alpha Model allows for instruction reordering and memory

bu�ering, which provides substantial potential for memory system performance

improvements. To enforce strong ordering the scheme provides the Memory Bar-

rier or MB. An MB insures that all instructions preceding the MB will be strongly

ordered with regard to all those following the MB. It therefore becomes an im-

portant characteristic of our coherency schemes that we provide implementations

for the Memory Barrier instruction, as well as ensuring that our implementations

of cache coherency ful�l the assumptions of the model. Its important to note that

in a decoupled architecture an MB also is a form of Loss of Decoupling, as it re-

quires synchronization between the AU and DU. For a comparison of other weak

consistency models see [10].

11

7.2 Hardware Coherency

In a typical hardware coherency scheme there will be state bits associated with

each line in cache and also with each line in main memory. The bits are modi�ed

dynamically to ensure coherency during updates of cache lines. We assume a

write-invalidate scheme, where if a processor chooses to write to a cache line it

must �rst broadcast an invalidation request to all other processors holding a copy

of that line, as well as changing the status of the line in main memory to note

exclusive access. Within our weak model there is no need to wait for invalidation

requests to be acknowledged before modifying a cache line. We assume a directory

based and hence scalable scheme, and use a write-through policy, and allocate new

cache lines on writes as well as reads.

The MB instruction is implemented in the following way. When a processor

executes an MB it will broadcast that MB to all processors and stall until it has

received acknowledgment from each processor. The processors will only acknow-

ledge the outstanding MB once all the memory requests which have been routed to

their memory have been serviced. In routing through our network we also need to

ensure that such MB instructions will not pass any previously issued invalidation

requests, thereby ensuring that all such requests will have arrived at their destin-

ation by the time processors attempt to acknowledge an MB. After the issuing

processor has received acknowledgment from all processors it may proceed with

the next instruction.

7.3 Software Coherency

Instead of altering state bits at run-time, a software scheme depends on static

compile-time analysis to enforce coherency. Firstly it is necessary to identify

computational units, or epochs, within an application, which typically consist of

nested do-loops. A decision is then made for each epoch what data is cachable

and what data can be read and written to only in main memory.

In our software scheme we attempt to allow all data to be cached, but then

invalidate data at the end of each epoch when necessary. We consider two variants,

the �rst of which is a simple scheme where all cached data is invalidated at the

end of an epoch. Secondly we consider a scheme were compile time analysis

lets us determine whether data is shared or private for an epoch, and we only

invalidate shared data. We again use a write-through write-allocate scheme. The

MB implementation outlined above is also used. However, an important attribute

12

of the assumed memory model in the context of software schemes is that an epoch

is naturally de�ned by Memory Barrier operations, so we also use the advent of

an MB to initiate the cache invalidations required in the scheme. Though false

sharing is also a hazard in software coherency, we assume small page sizes and

therefore don't focus on this problem in our study.

8 Multiprocessor Results

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500

H
it

R
at

e
in

 P
er

ce
nt

Cache Size in Lines

Hardware Scheme
Software Selective

Software Nonselective

Figure 14: TFRD Cache Hit Rates.

35000

40000

45000

50000

55000

60000

65000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
in

 C
yc

le
s

Cache Size in Lines

Hardware Scheme
Nonselective Software Scheme

Selective Software Scheme
Without Caching

Figure 15: TFRD on a Multiprocessor.

In our multiprocessor simulations we assume an 8 processor system, where each

AU-DU pair has its own cache, and where all processors share a common main

memory subsystem. Some of the �nal results of the study are shown in �gures 14

and 15. In �gure 14 we show the cache hit rates for the three schemes we have

described: hardware, software with global invalidation and software with selective

invalidation. Global invalidation clearly is too simplistic a scheme, as the reuse

of cached items can only occur within an epoch; no cross-epoch sharing can take

place. The selective invalidation scheme does much better, resulting in hit rates

of over 70 percent for a cache size of 4K lines. However, it is only the hardware

scheme that allows hit rates to reach 90 percent and above for these cache sizes.

Perhaps more importantly, we observe in �gure 15 that hit rates have a non-

linear relationship with execution time, unlike traditional architectures. As shown

earlier with Saxe diagrams for uniprocessor decoupled machines, the only way to

reduce LOD costs is to have high enough hit rates such that at least some loop

structures will observe localized 100 percent hit rates. This will only be possible

in applications with signi�cant data reuse, and even then we observe that only

the best performing (and hence most expensive) coherency schemes will succeed.

13

Despite the large di�erence in hit rate between the two software schemes, neither

of them can improve performance beyond that of the no-cache case.

390000

400000

410000

420000

430000

440000

450000

460000

470000

480000

490000

500000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
in

 C
yc

le
s

Cache Size in Lines

Hardware Scheme
Software Scheme

Figure 16: Linpack on Multiprocessor.

20400

20600

20800

21000

21200

21400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
in

 C
yc

le
s

Cache Size in Lines

Hardware Scheme
Software Scheme

Figure 17: OCEAN on Multiprocessor.

The other two applications show similar behaviour. We now show only the

selective-invalidation case of software coherency, as the two software schemes al-

ways result in near identical curves for the reasons we have explained. In both

OCEAN and Linpack the hardware scheme results in some speedups, while the

software schemes only manage to approach the performance of the non-caching

case.

9 Conclusions

We have shown how decoupled performance depends on the frequency of Loss of

Decoupling events, and have described the relationship between the latency tol-

erating nature of the architecture and this frequency. Through the use of Saxe

Diagrams we have shown that in decoupled architectures with fast Data Units

cache only succeeds in improving performance if a very high hit rate is achieved.

Applications that result in cache misses being unevenly distrubuted can be expec-

ted to gain more from the use of cache, as they will have a higher likelihood of

epochs having no cache misses than will applications where the misses are evenly

spread throughout the code. Multiprocessor caching will naturally result in lower

hit rates due to coherency operations, and hence gains will be more limited than in

the uniprocessor case. However, the hardware coherency scheme we have describe

still achieves at least small gains for all three applications we considered, whereas

the software schemes do not.

14

10 Acknowledgements

We would like to thank Alasdair Rawsthorne, Peter Bird, and Bob Fredieu for our

many discussions on caches in decoupled architectures. Many of the motivating

principles of this work evolved from those discussions.

This work has been funded by the European Community ESPRIT project

SHIPS, contract number P6253.

References

[1] J. Goodman, J. Hsieh, K. Liou, A. Plezkun, P. Schectuer, and H.

Young. PIPE: A VLSI Decoupled Architecture". Proc. 12th Interna-

tional Symp. on Computer Architecture, 1985.

[2] J. Smith, S. Weiss, and N. Pang. A Simulation Study of Decoupled

Architecture Computers. IEEE Trans. on Computers, Vol. C-35, No.

8, August 1986.

[3] J. Smith, et. al. The ZS-1 Central Processor. Proc. 2nd Int. Conf.

on Architectural Support for Programming Languages and Operating

Systems, October, 1987.

[4] L. Kurian, P. Hulina, and L. Coraor. Memory Latency E�ects in

Decoupled Architectures with a Single Data Memory Module. Proc.

19th Int. Symp. on Computer Architecture, May, 1992.

[5] P. Bird, A. Rawsthorne, and N. Topham. The E�ectiveness of De-

coupling. Proc. 7th Int. Conf. on Supercomputing, July, 1993.

[6] G. Cybenko, L. Kipp, L. Pointer, D. Kuck, Supercomputer Perform-

ance Evaluation and the Perfect Benchmarks", International Con-

ference on Supercomputing, 1990.

[7] A. Rawsthorne and N. Topham. Saxe Diagrams: A Notation for Visu-

alizing Performance in Decoupled Architectures. In Preparation.

[8] S. Adve, V. Adve, M. Hill, and M. Vernon. Comparison of Hard-

ware and Software Cache Coherency Schemes. Computer Sciences

Technical Report No. 1012, University of Wisconsin-Madison, March

1991.

15

[9] Alpha Architecture Handbook. Digital Equipment Corporation,

1992.

[10] K. Gharachorloo, A. Gupta, J. Hennessy. Performance of memory

consistency models for shared-memory multiprocessors. Proc. 4th

Conf. on Architectural Support for Programming Languages and Op-

erating Systems, 1991.

16

