
Integrating Behavioural and Simulation Modelling

Rob Pooley

Department of Computer Science

University of Edinburgh

Abstract

Discrete event simulation has grown up as a practical technique for estimating

the quantitative behaviour of systems, where direct measurement is undesirable or

impractical. It is also used to understand the detailed functional behaviour of such

systems. Its theory is largely that of experimental science, centering on statistical

approaches to validating the measures generated by such models, rather than on

the veri�cation of their detailed behaviour. On the other hand, much work has

been done on understanding and proving functional properties of systems, using

techniques of formal speci�cation and concurrency modelling. This paper presents

an approach to understanding the correctness of the behaviour of discrete event

simulation models, using a technique from the concurrency world, Milner's Calculus

of Communicating Systems (CCS) and to deriving behavioural properties of such

models without resorting to simulation.

It is shown that a common framework based on the process view of models

can be constructed,As a basis for this framework, a hierarchical graphical model-

ling language (Extended Activity Diagrams) is developed. This language is shown

to map onto both the major constructs of the DEMOS discrete event simulation

language and their equivalent CCS models. A graphically driven tool based on

such a framework is presented, which generates models to use both simulation to

answer performance questions (what is the throughput under a certain load) and

functional techniques to answer behavioural questions (will the system behave as

expected under certain assumptions). An example of the application of this ap-

proach to a typical model is presented.

1

1 Introduction

In designing complex systems, simulation is often used to establish both quantitative

(performance) and qualitative (behavioural) properties. Its use is, however, expensive

and often yields only approximate results. For qualitative properties, Petri nets, process

algebras and formal speci�cation techniques are increasingly used. For quantitative prop-

erties analytical or numerical modelling, using queues or stochastic extensions to Petri

nets, are often preferred, but simulation remains the only way to handle large models

with complex interactions, because of the restricted classes of models suitable for exact

solutions and the state space explosion when generating underlying Markov chains for

numerical analysis.

Discrete event simulation tools are traditionally categorised as being based on one of

a small number of views of a model. A number of modelling tools are based on or can

support the process view of simulation as de�ned by Franta [8]. Several of these, as well

as others based on other views, have diagram conventions for users to de�ne their models

and some support model construction via graphical interfaces based on such diagrams.

Unfortunately, whereas Petri nets generated from graphical tools can be analysed for

both functional and performance behaviour, the use of diagrams for simulation is usually

speci�c to one simulation tool and o�ers no help in understanding the behaviour of models

without actually simulating them. Since discrete event simulation is in e�ect a (pseudo-

)random walk through the state space of the model, it is not possible to guarantee to

visit all states without pre-analysis by other means.

This paper assesses the bene�ts of a formal understanding of process based discrete

event simulation models. These are expressible in terms of diagrams suitable for direct

graphical input on PCs or workstations. At the same time they are amenable to a priori

functional analysis and have a well developed semantics. The vehicle for this is a mapping

from a graphical language of models (known as Extended Activity Diagrams) both to a

discrete event simulation language - an extended form of Birtwistle's DEMOS) [5] - and

to a process algebra - Milner's Calculus of Communicating Systems (CCS)[13].

The rest of this paper is structured as follows. An overview of DEMOS is given

in section 2, along with the symbols of the graphical notation of Extended Activity

Diagrams. Section 3 contains a short description of the Calculus of Communicating

Systems (CCS), its temporal extension TCCS [22, 14] and an associated process logic,

the modal � -calculus [21]. Section 4 presents a de�nition of the mechanisms of the

DEMOS language in terms of CCS. Some problems with such de�nitions are identi�ed

and remedies discussed. Section 5 presents the tool which supports the ideas in this

paper. Section 6 contains a case study which demonstrates the bene�ts and problems

in combining pre-analysis of functional properties with simulation of dynamic, timed

behaviour. Not all questions are found to be easily addressed, even with the use of

the modal � -calculus, but some clear bene�ts are claimed. Section 7 draws together

the strands of the earlier sections and assesses the outcome. Open issues and areas for

further research and development are identi�ed.

2

2 DEMOS and Extended Activity Diagrams

Graphical model construction is not new, but it has never been formalised. Nor has

a theory of behavioural equivalence for discrete event simulation models been fully de-

veloped. Previous work on simulation graphs[27] concluded that esatblishing behavoural

equivalence of event based models was not even feasible. The approach of this paper is

based on models represented by the process view, which proves to be more amenable to

such an approach.

2.1 Process based discrete event simulation

The process based view takes as its starting point the idea that the world consists of

active and passive components. The term was in common use for several years before

the appearance of Franta's book [8], but he gives the �rst complete description of the ap-

proach, using SIMULA as the implementation language. Active components (processes)

are described by their life histories, which often form cycles. They interact with the world,

in competition or co-operation, through resources, which are passive. This division into

two classes is acknowledged to be arbitrary and Franta gives examples where the same

object may be seen as active or passive, according to the perspective of the modeller.

The main bene�t claimed for the process based approach is that it expresses the model

in terms of the structures observable in the real world and so makes modelling more

intuitive and interpretation of results easier. It also can have signi�cant implementation

bene�ts.

2.2 SIMULA and DEMOS

Many languages and packages claim to be process oriented or to be capable of representing

process oriented models. Rather like the term \object oriented", process oriented has

become a victim of its own success in appealing to ease of understanding. There are, in

fact, several suitable languages for this purpose, but this paper will refer mainly to the

DEMOS package, which is an extension of SIMULA.

SIMULA [4, 16] is a general purpose programming language, de�ned as a superset of

Algol 60. It was designed to support the e�cient implementation of event and process

based discrete event simulation. The notion of a process is supported by a combination

of inheritance and quasi-parallel sequencing (co-routines or light weight processes) within

the class concept. This provides an e�cient implementation of conditional waiting, since

objects suspended as co-routines can wait in heterogeneous lists and can resume them-

selves when events in the execution of the model allow them to proceed.

SIMULA supports layers of packages, each re�ning and extending earlier ones. In

this way, the DEMOS package known is provided. This has a time ordered event list

and a class ENTITY, which is the building block for active components in models, adding

modelling related abstractions to the co-routine semantics of classes. In addition to these

basic features DEMOS has automatic statistical collection and reporting and optional

output of event traces. In this way, it allows a wide range of models to be solved to

3

establish their dynamic behaviour, both in terms of quantitative performance (response

time, queue lengths etc.) and event based behaviour traces. Although SIMULA does

not support directly the concept of a general wait-until, Vaucher showed how this could

be e�ciently implemented in SIMULA by using the Algol name mode for procedure

parameters [24, 25]. DEMOS o�ers such a mechanism, using a conditional queue class,

CONDQ. A number of more specialised building blocks for the passive elements of a model

are also provided, all of which report key statistics automatically. These include RES, for

resources, BIN, for unbounded bu�ers, and WAITQ, for master/slave interactions.

2.3 Extended Activity Diagrams

The key to the tool frontend described in this paper is the de�nition for the �rst time of a

complete, formally understood graphical notation for hierarchical process based models.

For a full de�nition of this graphical language see [19]. This de�nition of Extended Activity

Diagrams has allowed reasoning about the behavioural properties of simulation models,

independently of their execution for performance evaluation.

Graphical description of a process class requires both a way of showing the ow of con-

trol through such a process and a way of representing interactions and synchronisations

engaged in by instances of it. Construction of a model or sub-model de�nes the linkages

between instances of processes, by mapping their required interactions onto instances of

those objects which support such interactions. Many synchronisations among processes

can be mapped onto queues, which is the only mechanism in queueing network based

formalisms such as PAWS [11]. However, the use of higher level abstractions, such as

resources in GPSS [20], adds to the ease of description and widens the range of mechan-

isms which can conveniently be represented. Activity diagrams were used informally by

Birtwistle [5] to provide a convenient ow of control description, based on ow charts, and

to allow easy description of a wide range of useful synchronisation mechanisms, based on

activity cycle diagrams. This made them a good starting point for building a complete

diagramming convention for process interaction, as described in [19].

A simple example of an atomic process description is shown in Figure 1. The model is

the reader/writer model from [5] chapter 4. It includes Birtwistle's standard symbols of a

rectangular box for a delay, annotated with a description of the associated activity, and a

circle for a resource, annotated with a description of the resource and the initial amount

available. New symbols are needed to complete even this simple example. Thus, Hughes

[10] added the lower semi-circle, annotated with the process name, which marks the start

of the process life cycle, and an inverted form of the start symbol, with no annotation,

to mark the termination of the process. In the Simmer Process Interaction Tool [17] syn-

chronisation nodes were also added, to show where resources are acquired and released.

This last extension is a signi�cant change from Birtwistle's convention of attaching syn-

chronisations to hold boxes and allows the exact order of all such synchronisations to be

speci�ed.

Various forms of arrowed line might be used to represent the type of a link, but

this is fully determined by the types of the nodes which it joins. Thus the lines joining

delay to delay, delay to start or delay to termination nodes represent control ow in

4

"!

?

Reading

?

Using

?

v�

v

6

"!

?

Updating

?

Collecting

?

v

�

�

�

�

-

vH

H

H

HY

Bu�ers

&%

'$

Figure 1: Mutual exclusion resource contention - the reader/writer model

the process, in the same manner as in conventional ow charts. On the other hand,

the lines joining resources to synchronisation nodes represent acquisition or release of

amounts of those resources. Acquisition and release constitute, respectively, a potential

blocking of the ow of control in the process due to contention with other processes and

a potential freeing of another process currently blocked by this process. The amount to

be acquired or released is shown as an annotation to the link, while the direction of the

arrow on the line determines which action is intended. All external interactions are shown

by synchronisation nodes. In this sort of process type description the objects to which

synchronisation nodes are linked are there purely to show the type of synchronisation by

which any instance of this type will be linked to other process instances. This example

uses the process types Reader and Writer, but their de�nitions are independent of each

other, being linked solely through the intervening Buffers resource. In such simple

cases the model can be completely described by suitable annotation of the process type

description, with amounts of resources and inter-arrival times added in this case.

The presence of loop-start/end nodes removes the need for cycles in these graphs. A

decision or loop-start node is associated with the next succeeding branch/loop-end node.

Communication through a passive object, such as a resource or a condition queue, is

shown by an outgoing arrow to the passive object from a synchronisation node in the

output process and an incoming arrow from the passive object to a synchronisation node

in the input process.

3 CCS and the Modal ��calculus

The Calculus of Communicating Systems forms the core of the formal semantics for

process based simulation developed below. It was created to model the behaviour of

5

systems which can be described in terms of communicating agents. Consider �rst the

basic calculus [13]. This contains the following primitives for de�ning agents, which will

be used in later chapters:

sequential composition a:B after action a the agent becomes a B

parallel composition AjB agents A and B proceed in parallel

choice A + B the agent behaves as either A or B, but not both,

depending on which acts �rst

restriction AnM the set of labels M is hidden from outside agents

relabelling A[a

1

=a

0

; ::] in this agent label a

1

is renamed a

0

the null agent 0 this agent cannot act (deadlock)

the divergent agent ? this agent can cycle inde�nitely and unobservably

Here identi�ers starting with lower case letters denote the labels of complementary

action pairs, where the use of a label with an overbar, c, or without one, c, distinguishes

two halves (output and input) of an action, both of which must be possible before it

can proceed. Identi�ers which begin with an upper case letter de�ne agents. Agents are

constructed from the forms given above.

Symbolic names for agents are de�ned using the binding symbol,

def

= . In the Con-

currency Workbench this in�x operator is replaced by the pre�x operator bi. Thus the

equations A

def

= b:C and bi A b.C are equivalent in the two formats.

CCS uses a notion of observation equivalence, which depends on the assumption that

two agents are equivalent if any di�erences in their behaviours cannot be distinguished by

an observer. Where two agents containing the two sides of a complementary action are

combined in parallel, the resulting agent may hide the action and regard it as internal.

CCS calls such internal actions � s. Under many circumstances such internal actions have

no e�ect on the observable behaviour of agents and so may be ignored. This is not always

so, however, notably when a � is the pre�xing action of one half of a choice.

By using the notion of bisimulation as its basis of equivalence, CCS is able to detect

equivalence for a wider class of models than the use of isomorphism would permit. It is

also inherently compositional, allowing bisimulation results proved for components to be

preserved by its combinators and so reducing the e�ort of proving properties of larger

models constructed in this way.

3.1 Temporal CCS

Temporal CCS [22, 14] is an extension to CCS, which allows both explicit delays and wait-

for synchronisation (asynchronous waiting), in a manner super�cially similar to DEMOS.

It adds the primitives:

�xed time delay (t) where the agent requires t time units to elapse before it

can perform its next action

wait for synchronisation � where the agent may idle inde�nitely until its next

action is possible

6

non-temporal deadlock 0 where the agent may idle inde�nitely and never engages

in further actions

Deadlock now extends to cover situations where time cannot pass, since all parallel

components must be ready to advance time for it to move on. Put another way, if

there are components composed in parallel where some have as their current action an

unsatis�ed complementary action, and other agents have a time delay, the system is in

temporal deadlock. Non-temporal deadlock allows inde�nite idling, i.e. all processes are

able to wait inde�nitely for actions which cannot happen and so they cannot evolve.

The wait for delay is sometimes written by underlining the next action and sometimes

by writing a � preceding it. The latter form is used throughout this paper. In the

Concurrency workbench it is written as a $ symbol preceding the next action.

3.2 Process logics

If process algebras represent a useful way of describing models, with a formally de�ned

semantics, it is natural to use a corresponding process logic to frame properties and

queries concerning these models. Although the Concurrency Workbench, for instance,

allows simple properties, such as the presence of deadlock, to be queried directly, it needs

a suitable logic to express more speci�c properties and questions. Formally such logics are

known as modal logics and express assertions about changing state. Such logics are not

con�ned to reasoning about CCS. They apply generally to labelled transition systems.

There is an appealingly simple modal logic, known as Hennesy-Milner logic [9], for

expressing assertions about the immediate possibilities for a model. There is also an

extended modal logic, with �xed point operators allowing the expression of recursive

de�nitions, known as the modal ��calculus. Within the CWB, the modal ��calculus

[21] is used for this purpose.

3.3 Hennesy-Milner logic

The description here follows the outline of Milner's presentation in [58].

Consider the simple system

S1

def

= a:S2

S2

def

= a:S3

S3

def

= b:S3

Using Hennesy-Milner logic it is possible to assert properties of a system's states, using

the following operators:

satisfaction j= the agent on the left hand side of the operator

satis�es the formula on its right hand side.

possibility 3 e.g. it is possible to make an a move both from S1 and from S2.

7

These are expressed respectively as: S1 j= 3 a True and S2 j= 3 a True. The

state True implies unconditional satisfaction. It is shorthand for the empty conjunction,

V

i=2;

F

i

.

non-satisfaction 6j= e.g. S3 cannot make an a move,

i.e. S3 6j= 3a True which means S3 j= :3a True

It is possible to distinguish between S1 and S2 if from S1 if it is possible to make one a move followed

by another, but not to do this from S2. This is expressed as:

S1 j= 3a3a True and S2 6j= 3a3a True

necessity 2a the dual operator to 3a.

If S1 j= 2a F then by performing the move a, S1 must always reach a state where F holds.

3aF requires at least one of its currently possible a moves to reach the state F ; 2aF

requires all of its currently possible a moves to reachthe state F .

There are also weak forms of the possibility and necessity operators, which disregard

any � s.

3.4 The modal ��calculus

Hennesy-Milner logic is good for asking questions one or two moves ahead, but cannot

cope with recursive de�nitions. By adding just one construct - �xed point operators -

to Hennesy-Milner logic, the result is the modal ��calculus. This is in e�ect a powerful

temporal logic, allowing one to express notions of eventuality and invariance of states

and actions. Although the modal ��calculus is much more general than a process logic,

the discussion here is restricted to its use with CCS.

More complete, fairly readable accounts of the modal m-calculus can be found in

Stirling [21] and Aldwinckle, Nagarajan and Birtwistle [1].

A �xed point equation might have the form:

Y

def

= a3bY

meaning that each state in Y has the property of being able to perform an a action

followed by a b action and then reaching a state in the original set, Y . Once we have

allowed such recursive de�nitions we can examine the properties of �xed point equations

and �nd sets of states which satisfy them, within agents. Not all such equations have

solutions, nor are their solutions guaranteed to be unique. However, a restriction that

there must be an even number of negations pre�xing a recursively de�ned variable in an

equation guarantees that there must be at least one solution. Formally, this property

de�nes that the equation is monotonic.

It is worth noting that a property with respect to a model de�nes the set of states

where that property holds, i.e. the property and the set of states are di�erent ways of

expressing the same thing.

There are two very important �xed point operators, de�ning the maximum and min-

imum �xed points of a recursive equation. The maximum �xed point is related to the

8

fact that the union of any two solutions to a �xed point equation is a subset of a further

solution. This superset is the closure under deduction of the union of the two initial sets.

The maximum �xed point of an equation is the closure under deduction of the union

of all �xed points of that equation, i.e. it contains every state which can form part of

a solution. The minimum �xed point is related to the fact that the intersection of any

pair of solutions contains a solution. Thus the minimum �xed point of an equation is the

smallest solution to that equation and is a subset of the intersection of all �xed points. It

contains only those states guaranteed to be in every solution. It is often the empty set.

Whilst it is not always obvious how to interpret �xed point modal formulae, the

general idea is that a maximum �xed point expresses some property which always holds

(an invariant), while a minimum �xed point expresses a property which will eventually

hold. When verifying systems maximum �xed points are useful for expressing safety

properties and minimum �xed points for expressing liveness properties.

Some examples yield to intuition. For example, following [1]:

Y

def

=< x > T _ [�]Y

has a minimum �xed point which can be read as saying that it is possible to perform

an x action or all actions lead to a situation where it is eventually possible to do so. The

maximum �xed point of the same equation denotes the set of all states.

3.5 Concurrency workbench

The Concurrency Workbench (CWB) [7, 15] is a tool that automates the checking of

assertions about CCS models in order to establish properties of the systems they describe.

It supports the basic calculus, the temporal extension to this and a synchronous variant

of the basic calculus. The CWB allows testing of expressions in the modal ��calculus.

In the method developed in this paper, the CWB is used for the behavioural analysis of

CCS models generated automatically from Extended Activity Diagrams, while DEMOS

is used to solve them for their performance measures.

4 DEMOS in CCS

Representations of processes map directly onto Entity declarations in DEMOS and agent

de�nitions in CCS. By using parallel composition of agents in CCS, it is possible to

instantiate co-operating and competing processes within a model in the same way as use

of new statements in DEMOS. Interactions must be modelled in CCS by complementary

actions, shared by the active or passive objects involved in the interaction, while in

DEMOS they are calls to procedures (methods) which are attributes of those objects.

In CCS internal actions are either disregarded (in un-timed models) or represented by

delays matching DEMOS hold statements (in timed versions). Simple DEMOS sequences

of actions are matched by the normal CCS pre�xing of an agent with an action or a time

delay. Termination, shown in DEMOS by the end of an Entity's body, is indicated in

9

CCS by the non-temporal deadlock agent, 0, which performs no further actions but does

not stop time passing. Figure 2 shows a simple example.

Entity class Reader;

begin

Buffers.Acquire(1);

Hold(3);

Buffers.Release(1);

end;

Reader

def

= buffersAcq

1

(3)buffersRel

1

:0

Figure 2: A DEMOS sequential Entity and a corresponding TCCS agent

Loops are represented by recursive agent de�nitions. Figure 3 shows a simple example

of this.

Entity class Reader;

begin

while True do

begin

Buffers.Acquire(1);

Hold(3);

Buffers.Release(1);

end;

end;

Reader

def

= buffersAcq

1

(3)buffersRel

1

:Reader

Figure 3: A DEMOS repeating Entity and a corresponding TCCS agent

One obvious correspondence that holds in all the following mechanisms is that syn-

chronisations which can block are formed by a communication, preceded by the inde�nite

wait (�) in TCCS. Figure 4 shows this in terms of elements of the example used in the

case study in Section 6 of this paper.

Note that in the temporal calculus it is necessary to decide whether an action is

allowed to block inde�nitely or to have the e�ect of killing the process if it cannot be

satis�ed immediately. All acquire actions by processes can lead to a process being blocked,

awaiting freeing of a resource and so such actions are pre�xed with the inde�nite waiting

action �. On the other hand, releases should only be permitted in cases where there has

already been a matching acquire, leaving the matching resource always ready to accept

it. Therefore releases are not pre�xed with �.

10

entity class Reader_C;

begin

while True do begin

Buffers.Acquire(1); ! grab the buffer;

Hold(ReadTime);

Buffers.Release(2); ! let the buffer go;

Hold(ThinkTime);

end;

end-of-Reader;

entity class Writer_C;

begin

while True do begin

Buffers.Acquire(3); ! grab all the buffers;

Hold(UpdateTime);

Buffers.Release(3); ! let the buffer go;

Hold(GatherTime);

end;

end-of-Writer;

ref(Res) Buffers;

Reader1 :- new Reader_c("Reader"); Reader2 :- new Reader_c("Reader");

Writer1 :- new Reader_c("Reader");

Buffers :- new Res("Buffers", 3);

Reader

def

= �:bAcq

1

:(T

Read

)�:bRel

1

(T

Think

)Reader

Writer

def

= �:bAcq

3

:(T

Update

)�:bRel

3

(T

Think

)Writer

Buffers

3

def

= �:((bAcq

1

:Buffers

2

) + (bAcq

3

:Buffers

0

))

Buffers

2

def

= �:((bAcq

1

:Buffers

1

) + (bRel

1

:Buffers

3

))

Buffers

1

def

= �:(bRel

1

:Buffers

2

)

Buffers

0

def

= �:(bRel

3

:Buffers

3

)

Model

def

= (Buffers

3

jReaderjReaderjWriter)nfbAcq

1

; bAcq

3

; bRel

1

; bRel

3

g

Figure 4: Demos Res object used by Entities and corresponding TCCS

11

Resources must be able to wait inde�nitely in all states and so all their actions are

pre�xed with �. Thus Figure 5 de�nes a general model of a resource in TCCS. In the

basic calculus, where all actions are instantaneous, no �s are needed.

Res0

def

=

Limit

X

i=1

�:resRelease

i

:Res

i

Resn

def

=

Limit�n

X

i=1

�:resRelease

i

:Res

n+i

+

n

X

i=1

�:resAcquire

i

:Res

n�i

Res

Limit

def

=

Limit

X

i=1

�:resAcquire

i

:Res

Limit�i

Figure 5: General de�nition of a DEMOS Res in TCCS

5 A Tool for Model Generation

5.1 Related tools

Several tools have appeared which combine simulation and exact quantitative solvers us-

ing a common input format [26, 2, 3]. A series of tools, beginning with the SIMMER

Process Interaction Tool [17], have shown the potential for generating DEMOS models

from graphical input. The translation of a subset of unmodi�ed DEMOS syntax into

CWB code for either CCS or SCCS was implemented by Tofts[23], permitting the con-

version of DEMOS programs process algebra and the use of the Concurrency Workbench

to prove properties of the systems. GreatSPN [6] and DSPNExpress [12], graphically

based stochastic Petri net tools, allow both simulation and structural analysis of their

underlying place transition net models.

In this paper, a new tool called Demographer allows both modi�ed DEMOS discrete

event simulation models and CCS process algebra models to be generated from a common

graphical description. The former can be solved by the DEMOS discrete event solver,

while the latter can be analysed by the Concurrency Workbench.

5.2 Demographer

Demographer is a simple graphical editor for creating both modi�ed DEMOS discrete

event simulation models and Calculus of Communicating Systems (CCS) [13] models

directly from extended activity diagrams as described above. The current version runs

under MS/DOS and is written entirely in SIMULA. An earlier version, using a less

complete de�nition of extended activity diagrams exists for X Windows under UNIX [18].

12

Compilation and execution of modi�ed DEMOS models is currently done separately, but

it is intended that they should be integrated into the graphical front end.

CCS is generated in the syntax of the Concurrency Workbench for most constructs

of Extended Activity Diagrams. Both the basic calculus and its temporal extension can

be generated. The Concurrency Workbench remains a separate tool, but it is trivial to

load the output of Demographer into it. By integrating the two types of modelling in a

pair of compatible tools, the bene�ts of both approaches are more easily obtained. At

the same time the process of modelling is simpli�ed and consistency between the two

solvable forms of the model is ensured.

5.3 The basic tool

Demographer allows the user to draw enhanced activity diagrams, by selecting symbols

from a menu and placing them on a canvas, which is divided into a grid of squares.

Each symbol occupies one square in the grid. Symbols are connected by drawing linking

symbols in the squares between them. The types of the symbols joined and the direction of

the links determine their meaning, in line with the formal grammar for extended activity

diagrams developed in [19].

Many symbols require additional information to be supplied to complete the descrip-

tion of the model. For instance, the Hold symbol requires a description of the duration

of the delay it represents. Additionally many symbols can usefully be annotated by a

short comment or description. This is possible by selecting a symbol and invoking an

open form operation. This will cause an input form menu appropriate to that symbol to

be displayed. The user may then enter the required information by typing into this form.

When a model's description is believed to be correct and complete the user may

request that a DEMOS program be generated from it. This is done by activating the

Generate button. The user will then be asked for the name of a �le into which the

DEMOS source is to be written.

6 A Simple Case Study

The reader/writer model used in the earlier examples is typical of a resource used to

enforce mutual exclusion. Under appropriate timings this model can produce starvation.

Figure 4 showed the mapping into TCCS for that model.

Consider the Reader process. This is a simple cyclical process, de�ned in CCS by a

right recursion. It requires only one bu�er to proceed. The Writer process is structurally

similar, but needs to acquire all the bu�ers before it can update them. This simple

mutual exclusion example is interesting since it may induce starvation of the Writer by

the Reader processes if the timings of the Readers are unfavourable. The resource is

modelled as usual and is simpli�ed as before. Finally the model is a parallel composition

of all processes

13

Figure 6: Demographer user interface

Since there are only two Reader processes and only in them can a bu�Acq1 take place,

and the only way to reach a Bu�s0 state is following a bu�Acq3, the only possible action

of a Bu�s0 agent is a bu�Rel3. Thus the graph of Model has two sub-graphs, which are

only joined by the start state.

The problem of starvation may be summarised as the situation where, although it is

theoretically possible to reach an agent (or sub-graph of the transition graph) within a

model, under certain timing and priority or resource conditions, created when the other

has proceeded, this cannot happen. Unlike the more general notion of unfairness, without

timing information the best that can be said is that the possibility does or does not exist,

i.e. that there is a choice from which two or more disjoint sub-agents start and at least

one of them contains a cycle which can prevent return to the choice.

In the model being considered this is clearly the start agent, Model. The two sub-

agents Reader and Writer both cycle back to this choice, but Reader may remain within

an internal cycle of activity. This is not strictly the same as livelock, since progress

may be made by the overall system, even though part of it is starved. Working without

timings the reachability graph of Figure 7 is produced.

It is the secondary cycle between the two reader processes that prevents the writer

from engaging in any activity. If timings are added which force the model into bad

behaviour, the temporal version of CCS can be used to show this, as in Figure 8. The

timings in the Writer agent are unimportant, as it will never be allowed to start as long as

both Readers do not release their bu�ers simultaneously. The Reader agent is extended

14

(Reader | Reader | Writer | Buffs3)

^ | | ^

buffRel1 buffAcq1 buffAcq3 buffRel3

| V V |

(Thinker | Reader | Writer | Buffs2) (Reader |Reader | Updater | Buffs0)

^ |

buffRel1 buffAcq1

| V

(Thinker1 | Thinker1 | Writer | Buffs1)

Figure 7: Reader/Writer reachability graph without timings

into a series of sub-agents corresponding to time advancing. The overall model uses time

pre�xes to schedule the various Readers and Writers out of time with each other. The

transition graph is now as shown in Figure 9.

Reader0

def

= �:buffAcq1:Thinker0

Thinker0

def

= (3)Thinker1

Thinker1

def

= buffRel1:Reader1

Reader1

def

= (1)Reader0

Model

def

= (Reader0j(2)Reader0j(1)WriterjBuffers3) L(Model)

Figure 8: Reader/Writer TCCS with timings forcing starvation

The last state is identical, when re-ordered, to an earlier state and so the model will

cycle inde�nitely without Writer ever acting. Expressing starvation The property that

starvation may be possible can be given in English as follows.

Given a choice state, generated by applying the expansion theorem to the parallel

composition of two agents, there is, from that state of the model, a path which may

revisit that choice, but need not do so. If timing information or priorities are added, it

is possible to show cases where such a system will de�nitely behave badly.It would be

comparatively simple to phrase a question in the modal �-calculus of the form, \Is it

possible for the model to reach a state (or perform an action) in the Writer cycle once it

has reached (performed) one in the Reader inner cycle" One such question is written in

the Workbench syntax as:

bi X (Thinker1| Thinker1| Writer| Buffers_1)\{buffAcq_1,buffAcq_3,buffRel_1,buffRel_3}

cp X min(X.<buffAcq_3>T | <->X)

15

(Reader0 | (2)Reader0 | (1)Writer | Buffers3)

| buffAcq1

V

(Thinker0 | (2)Reader0 | (1)Writer | Buffers2)

| (2)

V

((1)Thinker1 | Reader0 | Writer | Buffers2)

| buffAcq1

V

((1)Thinker1 | Thinker0 | Writer | Buffers1)

| (1)

V

(Thinker1 | (2)Thinker1 | Writer | Buffers1)

| buffRel1

V

(Reader1 | (2)Thinker1 | Writer | Buffers2)

| (1)

V

(Reader0 | (1)Thinker1 | Writer | Buffers2)

| buffAcq1

V

(Thinker0 | (1)Thinker1 | Writer | Buffers1)

Figure 9: The Reader/Writer transition graph showing starvation

the command cp asks the CWB to heck the proposition that the agent X satisies the

modal � formula that follows. Thus, once the structure of the model is understood, an

answer to the possibility of starvation can be expected. The CWB answers false to the

command, indicating that once in the state speci�ed, the action buffAcq

3

cannot ever

be performed. It is perhaps not unreasonable to expect a modeller to be happy to do this

kind of reasoning.

To check this, a series of runs of the simulation model were made. The output is

shown in table 1.

16

R1 RT1 TT1 C1 R2 RT2 TT2 C2 W1 UT1 GT1 C3

0.0 3.0 3.0 29 2.0 1.0 1.0 57 1.0 3.0 3.0 28

0.0 3.0 3.0 33 2.0 1.0 3.0 34 1.0 2.0 2.0 33

0.0 3.0 3.0 33 2.0 1.0 3.0 34 1.0 2.0 3.0 33

0.0 3.0 3.0 29 2.0 1.0 3.0 29 1.0 3.0 2.0 28

0.0 3.0 3.0 29 2.0 1.0 3.0 29 1.0 3.0 3.0 28

0.0 3.0 1.0 50 2.0 3.0 1.0 49 1.0 2.0 2.0 0

0.0 3.0 1.0 50 2.0 3.0 1.0 49 1.0 2.0 3.0 0

0.0 3.0 1.0 50 2.0 3.0 1.0 49 1.0 3.0 2.0 0

0.0 3.0 1.0 50 2.0 3.0 1.0 49 1.0 3.0 3.0 0

0.0 3.0 1.0 44 2.0 3.0 3.0 23 1.0 2.0 2.0 21

0.0 3.0 1.0 44 2.0 3.0 3.0 23 1.0 2.0 3.0 21

0.0 3.0 1.0 39 2.0 3.0 3.0 21 1.0 3.0 2.0 19

0.0 3.0 1.0 39 2.0 3.0 3.0 21 1.0 3.0 3.0 19

0.0 3.0 3.0 23 2.0 3.0 1.0 43 1.0 2.0 2.0 22

0.0 3.0 3.0 23 2.0 3.0 1.0 43 1.0 2.0 3.0 22

0.0 3.0 3.0 21 2.0 3.0 1.0 39 1.0 3.0 2.0 19

R

n

! Start time of Reader

n

RT

n

! Read time of Reader

n

TT

n

! Think time of Reader

n

C

1;2

! Count of accesses by Reader

1;2

W

1

! Start time of Writer

UT

1

! Update time of Writer

GT

1

! Gather time of Writer

C

3

! Count of updates by Writer

Table 1: Output from simulation of reader/writer

17

7 Conclusions

The problem of establishing the behaviour of a system is very real for many simulation

modellers. Answers to such questions can sometimes be found by expressing the system

in a process algebra like CCS and using a process logic like the modal ��calculus to pose

queries.

This paper has used a simple example to demonstrate that expressing process based

simulations in both a discrete event simulation language (DEMOS) and a process algebra

(CCS) can be achieved from a common graphical representation. Further, the resulting

models can be used together to �nd both behavioural and performance properties.

This approach is still at an early stage of development. In particular, the power of the

modal ��calculus is bought at the expense of an awkward notation and some di�culties

in asking general questions easily. Now that the usefulness of combining these techniques

has been shown, work remains in integrating the querying with the model description

interface, to ease the learning curve for modellers.

Another direction for extension of this work is in applying it to direct derivation of

models from widely used formalisms for system speci�cation. For instance the CCITT

approved protocol speci�cation language LOTOS is based on process algebra features lik

ehtose in CCS. With a well developed semantics for the simulation language, it may prove

easier to �nd such mappings and to exploit them for both quantitative and qualitative

results.

References

[1] J. Aldwinckle, R. Nagarajan and G. Birtwistle An Introduction to Modal Lo-

gic and its Applications on the Concurrency Workbench, University of Cal-

gary Technical Report, June 1992

[2] H. Beilner and F.J. Stewing \Concepts and Techniques of the Performance

Modelling Tool HIT", in Proceedings of the European Simulation Multicon-

ference, Vienna, 1987, SCS Europe

[3] H. Beilner, J. M�ater and C. Wysocki \The Hierarchical Evaluation Tool

HIT", in Tools Supplement of the 7th International Conference on Techniques

and Tools for Computer Performance Evaluation, Vienna, 1994 pp 3-6

[4] G.M. Birtwistle, O.J.Dahl, B.Myhrhaug and K.Nygaard Simula Begin,

Chartwell-Bratt, 1972

[5] G.M. Birtwistle Discrete Event Modelling on SIMULA, MacMillan, 1979

[6] G. Chiola \A Graphical Petri Net Tool for Performance Analysis", in D.

Potier Ed. Proceedings of the International Workshop on Modelling Tech-

niques and Performance Evaluation, March 1987, pp 297-307, AFCET, Paris

18

[7] R. Cleaveland, J. Parrow and B. Ste�en \The Concurrency Workbench: A

Semantics Based Tool for the Veri�cation of Concurrent Systems", ACM

TOPLAS, Vol 15 No 1, 1993

[8] W. Franta The Process View of Simulation, North-Holland, 1978

[9] M.C. Hennessy and A.J.R.G. Milner \Algebraic Laews for Non-determinism

and Concurrency", Journal of ACM, Vol 32 No 1, 1985, pp137-161

[10] P.H. Hughes DEMOS Activity Diagrams, Notat nr 1, FAG 45080 Simulering,

H�st 1984, Norges Tekniske H�gskole, Norway

[11] Information Systems Research Associates PAWS Users Guide, 1986

[12] C. Lindemann \DSPNExpress: a Software Package for the E�cient Solution

of Deterministic and Stochastic Petri Nets", in R. Pooley and J. Hillston Eds.

Computer Performance Evaluation - Modelling Techniques and Tools, 6th

International Conference on Modelling Techniques and Tools for Computer

Performance Evaluation, Edinburgh, September 1992, Edits 10, Edinburgh

University Press,

[13] R. Milner Communication and Concurrency, Prentice-Hall, 1989

[14] F. Moller and C. Tofts A Temporal Calculus of Communicating Systems,

Edinburgh University, Department of Computer Science, Report ECS-LFCS-

89-104, 1989

[15] F. Moller The Edinburgh Concurrency Workbench (Version 6.1), Edinburgh

University, Department of Computer Science, LFCS Technical Note, TN34,

October 1992

[16] R.J. Pooley An Introduction to programming in SIMULA, Blackwells, 1987.

[17] R.J. Pooley and M.W. Brown \Automated modelling with the General At-

tributed (Directed) Graph Editing Tool - GA(D)GET", Proceedings of the

European Simulation Multiconference, Nice, June 1988, pp 410-415

[18] R.J. Pooley \Demographer: A Graphical Tool for Combined Simulation and

Functional Modelling", in R.Pooley and R. Zobel Eds, UKSS '93: Proceed-

ings of the First Conference of the UK Simulation Society, September 1993,

pp 91-95

[19] R.J. Pooley Formalising the Description of Process Based Simulation Models,

PhD Thesis, Edinburgh University, 1994

[20] Schriber T.J. Simulation Using GPSS, Wiley, New York, 1974

19

[21] C. Stirling Modal and Temporal Logics for Processes, Technical Report ECS-

LFCS-92-221, Laboratory for the Foundations of Computer Science, Depart-

ment of Computer Science, University of Edinburgh, 1992

[22] C. Tofts Timing Concurrent Processes, Report ECS-LFCS-89-104, Edinburgh

University, Department of Computer Science, 1989

[23] C. Tofts Process Semantics for Simulation, Technical Report, Department of

Mathematics and Computer Science, University of Swansea, 1993

[24] J. Vaucher \Simulation Data Structures using Simula 67", in Proceedings of

the Winter Simulation Conference, 1971, pp 255-260

[25] J. Vaucher \A Generalised Wait-Until Algorithm for General Purpose Simu-

lation Languages", Proceedings of the Winter Simulation Conference, 1973,

pp 177-183

[26] M. Veran and D. Potier \QNAP 2: a Portable Environment for Queueing

System Modelling" in D. Potier Ed. Proceedings of Modelling Techniques

and Tools for Computer Performance Evaluation, North Holland, 1985, pp

25-63

[27] E. Y�ucesan and L. Schruben, \Structural and Behavioural Equivalence of

Simulation Models", ACM TOMACS, Vol. 2 No 1, January 1992, pp82-103

20

