LFCS Seminar: Tuesday 14 October: Bruno Cavalar

Title: Monotone circuit complexity of matching
 
Abstract
 
We show that the perfect matching function on $n$-vertex graphs
requires monotone circuits of size $2^{n^{\Omega(1)}}$. This
improves on the $n^{\Omega(\log n)}$ lower bound of Razborov (1985).
Our proof uses the standard approximation method together with a new
sunflower lemma for matchings.